Glasnik Matematicki, Vol. 51, No. 1 (2016), 59-108.
QUASI-PARTICLE BASES OF PRINCIPAL SUBSPACES FOR THE AFFINE LIE ALGEBRAS OF TYPES BL(1) AND CL(1)
Marijana Butorac
Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
e-mail: mbutorac@math.uniri.hr
Abstract.
Generalizing our earlier work, we construct quasi-particle bases of principal subspaces of standard module LXl(1)(kΛ0) and generalized Verma module NXl(1)(kΛ0) at level k≥ 1 in the case of affine Lie algebras of types Bl(1) and Cl(1). As a consequence, from quasi-particle bases, we obtain the graded dimensions of these subspaces.
2010 Mathematics Subject Classification.
17B67, 17B69, 05A19.
Key words and phrases. Affine Lie algebras, vertex operator algebras, principal subspaces, quasi-particle bases.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.1.05
References:
- G. E. Andrews, The theory of partitions, Addison-Wesley, Reading, Mass.-London-Amsterdam, 1976.
MathSciNet
- E. Ardonne, R. Kedem and M. Stone, Fermionic characters of arbitrary highest-weight integrable r+1-modules, Comm. Math. Phys. 264 (2006), 427-464.
MathSciNet
CrossRef
- M. Butorac, Combinatorial bases of principal subspaces for the affine Lie algebra of type B2(1), J. Pure Appl. Algebra 218 (2014), 424-447.
MathSciNet
CrossRef
- C. Calinescu, Intertwining vertex operators and certain representations of (n),
Commun. Contemp. Math. 10 (2008), 47-79.
MathSciNet
CrossRef
- C. Calinescu, Principal subspaces of higher-level standard (3)-modules, J. Pure Appl. Algebra 210 (2007), 559-575.
MathSciNet
CrossRef
- C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of
certain A(1)1-modules, I: level one case, Internat. J. Math. 19 (2008), 71-92.
MathSciNet
CrossRef
- C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of
certain A(1)1 -modules, II: higher-level case, J. Pure Appl. Algebra 212 (2008), 1928-1950.
MathSciNet
CrossRef
- C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of
level one modules for the untwisted affine Lie algebras of types A,D,E, J. Algebra 323 (2010), 167-192.
MathSciNet
CrossRef
- C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of principal subspaces of standard A2(2)-modules, I, Internat. J. Math. 25 (2014), 1450063, 44 pp.
MathSciNet
CrossRef
- S. Capparelli, J. Lepowsky and A. Milas,The Rogers-Ramanujan recursion and
intertwining operators, Commun. Contemp. Math. 5 (2003), 947-966.
MathSciNet
CrossRef
- S. Capparelli, J. Lepowsky and A. Milas, The Rogers-Selberg recursions, the Gordon-Andrews
identities and intertwining operators, Ramanujan J. 12 (2006), 379-397.
MathSciNet
CrossRef
- S. Dasmahapatra, R. Dedem, T. R. Klassen, B. McCoy and E. Melzer:
Quasi-particles, conformal field theory and q-series, Internat. J. Modern Phys. B7 (1993), 3617-3648.
MathSciNet
CrossRef
- C. Dong and J. Lepowsky, Generalized vertex algebras and relative vertex operators, Birkhäuser, Boston, 1993.
MathSciNet
CrossRef
- C. Dong, H. Li and G. Mason, Simple currents and extensions of vertex operator
algebras, Comm. Math. Phys. 180 (1996), 671-707.
MathSciNet
CrossRef
- E. Feigin, The PBW filtration, Represent. Theory 13 (2009), 165-181.
MathSciNet
CrossRef
- B. L. Feigin and A. V. Stoyanovsky, Functional models of the representations of
current algebras, and semi-infinite Schubert cells, (Russian) Funktsional. Anal. i
Prilozhen. 28 (1994), 68-90, 96; translation in Funct. Anal. Appl. 28 (1994),
55-72;
MathSciNet
CrossRef
- I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104, 1993.
MathSciNet
CrossRef
- B. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the Monster,
Academic Press, Boston, 1988.
MathSciNet
- G. Georgiev, Combinatorial constructions of modules for infinite-dimensional Lie algebras,
I. Principal subspace, J. Pure Appl. Algebra 112 (1996), 247-286.
MathSciNet
CrossRef
- J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
MathSciNet
- M. Jerković and M. Primc, Quasi-particle fermionic formulas for (k, 3) -admissible configurations, Cent. Eur. J. Math. 10 (2012), 703-721.
MathSciNet
CrossRef
- V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge,
1990.
MathSciNet
CrossRef
- S. Kožić, Principal subspaces for quantum affine algebra Uq(A(1)n), J. Pure Appl. Algebra 218 (2014), 2119-2148.
MathSciNet
CrossRef
- S. Kožić and M. Primc, Quasi-particles in the principal picture of 2 and Rogers-Ramanujan-type identities, preprint.
- J. Lepowsky and H.-S. Li, Introduction to vertex operator algebras and
their representations, Birkhäuser,
Boston, 2004.
MathSciNet
CrossRef
- J. Lepowsky and M. Primc, Structure of the standard modules for the affine Lie algebra
A(1)1, American Mathematical Society, Providence, 1985.
MathSciNet
CrossRef
- H.-S. Li, Local systems of vertex operators, vertex superalgebras and modules,
J. Pure Appl. Algebra 109 (1996), 143-195.
MathSciNet
CrossRef
- H.-S. Li, Certain extensions of vertex operator algebras of affine type, Commun.
Math. Phys. 217 (2001), 653-696.
MathSciNet
CrossRef
- A. Meurman and M. Primc, Annihilating fields of standard modules
of (2, C) and combinatorial identities, Mem. Amer. Math. Soc. 137, (1999), 652, 89 pp.
MathSciNet
CrossRef
- A. Milas and M. Penn, Lattice vertex algebras and combinatorial bases: general
case and W-algebras, New York J. Math. 18 (2012), 621-650.
MathSciNet
link
- C. Sadowski, Presentations of the principal subspaces of the higher-level standard (3)-modules, J. Pure Appl. Algebra 219 (2015) 2300-2345.
MathSciNet
CrossRef
- C. Sadowski, Principal subspaces of higher-level standard (n)-modules; Internat. J. Math. 26 (2015), 1550053, 35 pp.
MathSciNet
CrossRef
Glasnik Matematicki Home Page