Glasnik Matematicki, Vol. 51, No. 1 (2016), 45-58.
A CHARACTERIZATION OF BIFLATNESS OF SEGAL ALGEBRAS BASED ON A CHARACTER
Morteza Essmaili, Mehdi Rostami and Massoud Amini
Department of Mathematics, Faculty of Mathematical and Computer Sciences, Kharazmi
University, 50 Taleghani Avenue, 15618 Tehran, Iran
School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
P.O.Box 19395-5746, Tehran, Iran
e-mail: m.essmaili@khu.ac.ir
Faculty of Mathematical and Computer Science , Amirkabir University of Technology,
424 Hafez Avenue, 15914 Tehran, Iran
e-mail: mross@aut.ac.ir
Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, 14115-134 Tehran, Iran
School of Mathematics, Institute for Research in Fundamental Sciences (IPM),
P.O.Box 19395-5746, Tehran, Iran
e-mail: mamini@modares.ac.ir
Abstract.
Let A be a Banach algebra and φ be a character on
A. In this paper, we give a necessary condition, called
condition (W), for φ-biflatness of Banach algebra
A as well as some hereditary properties. We also study
the relation between left φ-amenability and condition
(W). Moreover, we apply these results and characterize
the φ-biflatness of abstract symmetric Segal algebras. In
particular, we identify φ-biflatness of the Lebesgue-Fourier
algebra A(G), where G is a unimodular locally compact
group. These results describe a homological property for Segal
algebras in the setting of biflatness based on character φ.
2010 Mathematics Subject Classification.
16E40, 43A20.
Key words and phrases. φ-biflatness, φ-amenability, group algebras,
abstract Segal algebras.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.1.04
References:
- M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras,
Bull. Aust. Math. Soc. 82 (2010), 274-281.
MathSciNet
CrossRef
- M. Essmaili and M. Filali, φ-amenability and character amenability of some classes
of Banach algebras, Houston J. Math. 39 (2013),
515-529.
MathSciNet
- P. Eymard, Làlgèbre de Fourier d´un groupe localement
compact, Bull. Soc. Math. France 92 (1964), 181-236.
MathSciNet
CrossRef
- H. G. Feichtinger, A characterization of minimal homogeneous Banach spaces, Proc. Amer. Math. Soc. 81, (1981), 55-61.
MathSciNet
CrossRef
- A. Figà-Talamanca, Translation invariant operators in Lp, Duke Math. J. 32 (1965), 459-501.
MathSciNet
CrossRef
- F. Ghahramani and A. T. Lau, Weak amenability of certain classes of Banach algebra without bounded approximate identity,
Math. Proc. Cambridge Philos. Soc 133 (2002), 357-371.
MathSciNet
CrossRef
- E. Hewitt and K. A. Ross, Abstract harmonic analysis
I, Springer-Verlang, Berlin-New York, 1979.
MathSciNet
- Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras,
Studia Math. 193 (2009), 53-78.
MathSciNet
CrossRef
- B. E. Johnson, Non-amenability of the Fourier algebra of a compact group,
J. London. Math. Soc (2) 50 (1994), 361-374.
MathSciNet
CrossRef
- E. Kaniuth, A. T. Lau and J. S. Pym, On φ-amenability of Banach algebras,
Math. Proc. Cambridge philos. Soc. 144 (2008), 85-96.
MathSciNet
CrossRef
- E. Kaniuth, A. T. Lau and J. S. Pym, On character amenability of Banach algebras,
J. Math. Anal. Appl. 344 (2008), 942-955.
MathSciNet
CrossRef
- A. T. Lau and J. S. Pym, Concerning the second dual of the group algebra of a locally compact group,
J. London Math. Soc. 41 (1990), 445-460.
MathSciNet
CrossRef
- T. S. Liu, A. van Rooij and J. K. Wang, On some group algebra modules related to Wiener's algebra M1, Pacific. J. Math. 55, (1974), 507-520.
MathSciNet
CrossRef
- M. S. Monfared, Character amenability of Banach
algebras, Math. Proc. Cambridge Phil. Soc. 144 (2008), 697-706.
MathSciNet
CrossRef
- M. S. Monfared, Extensions and isomorphisms for
the generalized Fourier algebras of a locally compact group, J.
Funct. Anal. 198 (2003), 413-444.
MathSciNet
CrossRef
- H. Reiter, L1-algebras and Segal algebras, Lecture notes in mathematics, 231, Springer-Verlag, Berlin, 1971.
MathSciNet
- A. Sahami and A. Pourabbas, On φ-biflat and φ-biprojective Banach
algebras, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 789-801.
MathSciNet
CrossRef
- E. Samei, N. Spronk and R. Stokke, Biflatness and pseudo-amenability of Segal algebras, Canad. J. Math. 62, (2010), 845-869.
MathSciNet
CrossRef
- N. Spronk, Operator space structure on Feichtinger's Segal algebras, J. Funct. Anal. 248, (2007), 152-174.
MathSciNet
CrossRef
Glasnik Matematicki Home Page