Glasnik Matematicki, Vol. 51, No. 1 (2016), 45-58.

A CHARACTERIZATION OF BIFLATNESS OF SEGAL ALGEBRAS BASED ON A CHARACTER

Morteza Essmaili, Mehdi Rostami and Massoud Amini

Department of Mathematics, Faculty of Mathematical and Computer Sciences, Kharazmi University, 50 Taleghani Avenue, 15618 Tehran, Iran
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5746, Tehran, Iran
e-mail: m.essmaili@khu.ac.ir

Faculty of Mathematical and Computer Science , Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran
e-mail: mross@aut.ac.ir

Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, 14115-134 Tehran, Iran
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5746, Tehran, Iran
e-mail: mamini@modares.ac.ir


Abstract.   Let A be a Banach algebra and φ be a character on A. In this paper, we give a necessary condition, called condition (W), for φ-biflatness of Banach algebra A as well as some hereditary properties. We also study the relation between left φ-amenability and condition (W). Moreover, we apply these results and characterize the φ-biflatness of abstract symmetric Segal algebras. In particular, we identify φ-biflatness of the Lebesgue-Fourier algebra A(G), where G is a unimodular locally compact group. These results describe a homological property for Segal algebras in the setting of biflatness based on character φ.

2010 Mathematics Subject Classification.   16E40, 43A20.

Key words and phrases.   φ-biflatness, φ-amenability, group algebras, abstract Segal algebras.


Full text (PDF) (free access)

DOI: 10.3336/gm.51.1.04


References:

  1. M. Alaghmandan, R. Nasr-Isfahani and M. Nemati, Character amenability and contractibility of abstract Segal algebras, Bull. Aust. Math. Soc. 82 (2010), 274-281.
    MathSciNet     CrossRef

  2. M. Essmaili and M. Filali, φ-amenability and character amenability of some classes of Banach algebras, Houston J. Math. 39 (2013), 515-529.
    MathSciNet    

  3. P. Eymard, lgèbre de Fourier d´un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
    MathSciNet     CrossRef

  4. H. G. Feichtinger, A characterization of minimal homogeneous Banach spaces, Proc. Amer. Math. Soc. 81, (1981), 55-61.
    MathSciNet     CrossRef

  5. A. Figà-Talamanca, Translation invariant operators in Lp, Duke Math. J. 32 (1965), 459-501.
    MathSciNet     CrossRef

  6. F. Ghahramani and A. T. Lau, Weak amenability of certain classes of Banach algebra without bounded approximate identity, Math. Proc. Cambridge Philos. Soc 133 (2002), 357-371.
    MathSciNet     CrossRef

  7. E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Springer-Verlang, Berlin-New York, 1979.
    MathSciNet    

  8. Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math. 193 (2009), 53-78.
    MathSciNet     CrossRef

  9. B. E. Johnson, Non-amenability of the Fourier algebra of a compact group, J. London. Math. Soc (2) 50 (1994), 361-374.
    MathSciNet     CrossRef

  10. E. Kaniuth, A. T. Lau and J. S. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge philos. Soc. 144 (2008), 85-96.
    MathSciNet     CrossRef

  11. E. Kaniuth, A. T. Lau and J. S. Pym, On character amenability of Banach algebras, J. Math. Anal. Appl. 344 (2008), 942-955.
    MathSciNet     CrossRef

  12. A. T. Lau and J. S. Pym, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc. 41 (1990), 445-460.
    MathSciNet     CrossRef

  13. T. S. Liu, A. van Rooij and J. K. Wang, On some group algebra modules related to Wiener's algebra M1, Pacific. J. Math. 55, (1974), 507-520.
    MathSciNet     CrossRef

  14. M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge Phil. Soc. 144 (2008), 697-706.
    MathSciNet     CrossRef

  15. M. S. Monfared, Extensions and isomorphisms for the generalized Fourier algebras of a locally compact group, J. Funct. Anal. 198 (2003), 413-444.
    MathSciNet     CrossRef

  16. H. Reiter, L1-algebras and Segal algebras, Lecture notes in mathematics, 231, Springer-Verlag, Berlin, 1971.
    MathSciNet    

  17. A. Sahami and A. Pourabbas, On φ-biflat and φ-biprojective Banach algebras, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 789-801.
    MathSciNet     CrossRef

  18. E. Samei, N. Spronk and R. Stokke, Biflatness and pseudo-amenability of Segal algebras, Canad. J. Math. 62, (2010), 845-869.
    MathSciNet     CrossRef

  19. N. Spronk, Operator space structure on Feichtinger's Segal algebras, J. Funct. Anal. 248, (2007), 152-174.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page