Glasnik Matematicki, Vol. 51, No. 1 (2016), 23-44.
EULER-STIELTJES CONSTANTS FOR THE RANKIN-SELBERG L-FUNCTION AND WEIGHTED SELBERG ORTHOGONALITY
Almasa Odžak and Lejla Smajlović
Department of Mathematics, University of Sarajevo, Zmaja od Bosne 35, 71 000
Sarajevo, Bosnia and Herzegovina
e-mail: almasa@pmf.unsa.ba
e-mail: lejlas@pmf.unsa.ba
Abstract.
Let E be Galois extension of Q of finite degree and let π and π' be two irreducible automorphic
unitary cuspidal representations of GLm(EA) and GLm'(EA),
respectively. We prove an asymptotic formula for computation of coefficients γπ,π'(k) in the Laurent (Taylor) series expansion around s=1 of the logarithmic derivative of the Rankin-Selberg L-function L(s, π × π') under assumption that at least one of representations π, π' is self-contragredient and show that coefficients γπ,π'(k) are related to weighted Selberg orthogonality. We also replace the assumption that at least one of representations π and π' is self-contragredient by a weaker one.
2010 Mathematics Subject Classification.
11M26, 11S40.
Key words and phrases. Euler-Stieltjes constants, Rankin-Selberg L-function, weighted Selberg orthogonality.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.1.03
References:
- M. Avdispahić and L. Smajlović, Euler constants for a Fuchsian group of the first kind, Acta Arith. 131 (2008), 125-143.
MathSciNet
CrossRef
- M. Avdispahić and L. Smajlović, On the Selberg orthogonality for automorphic L-functions, Arch. Math. 94 (2010), 147-154.
MathSciNet
CrossRef
- W. E. Briggs, Some constants associated with the Riemann zeta-function, Mich.
Math. J. 3 (1955-56), 117-121.
MathSciNet
CrossRef
- M. W. Coffey, New results on the Stieltjes constants: Asymptotic and exact evaluation, J. Math. Anal. Appl. 317 (2006), 603-612.
MathSciNet
CrossRef
- M. W. Coffey, Series representations for the Stieltjes constants, Rocky Mountain J. Math. 44 (2014), 443-477.
MathSciNet
CrossRef
- J. W. Cogdell, L functions and converse theorems for GLn,
Automorphic forms and applications, 97-177, IAS/Park City Math. Ser., 12, Amer. Math. Soc., Providence, RI, 2007.
MathSciNet
- L. Euler, De progressionibus harmonicis observationes, Comment. acad sci. Petrop. 7 (1740), 150-161.
(Opera Omnia, Series 1, Vol. 14, 87-100.)
- S. S. Gelbert, E. M. Lapid and P. Sarnak, A new method for lower bounds
of L-functions, C. R. Acad. Sci. Paris 339 (2004), 91-94.
MathSciNet
CrossRef
- S. S. Gelbert, and F. Shahidi, Boundedness of automorphic
L-functions in vertical strips, J. Amer. Math. Soc. 14 (2001), 79-107.
MathSciNet
CrossRef
- T. Gillespie and G. Ji, Prime Number Theorems for Rankin-Selberg L-functions over number fields, Sci. China Math. 54 (2011), 35-46.
MathSciNet
CrossRef
- T. Gillespie and Y. Ye, The Prime Number Theorem and Hypothesis H with lower order terms, J. Number Theory 141 (2014), 59-82.
MathSciNet
CrossRef
- Y. Hashimoto, The Euler-Selberg constants for non-uniform lattices
of rank one symmetric spaces, Kyushu J. Math. 57 (2003), 347-370.
MathSciNet
CrossRef
- Y. Hashimoto, Y. Iijima, N. Kurokawa and M. Wakayama, Euler's constants for the Selberg and the Dedekind zeta functions, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), 493-516.
MathSciNet
CrossRef
-
C. Hermite and T. J. Stieltjes, Correspondance d'Hermite et de Stieltjes, I & II, edited by B. Baillaud and H. Bourget, Gauthier-Villars, Paris, 1905.
- H. Jacquet and J. A. Shalika, On Euler products
and the classification of automorphic representations I, Amer. J.
Math. 103 (1981), 499-558.
MathSciNet
CrossRef
- H. Jacquet and J. A. Shalika, On Euler products
and the classification of automorphic representations II. Amer. J.
Math. 103 (1981), 777-815.
MathSciNet
CrossRef
- H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc. 16 (2003), 139-183.
MathSciNet
CrossRef
- H. Kim and F. Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), 177-197.
MathSciNet
CrossRef
- C. Knessl and M. W. Coffey, An asymptotic form for the Stieltjes constants γk(a) and for a sum Sγ(n) appearing under the Li criterion, Math. Comp. 80, No. 276 (2011), 2197-2217.
MathSciNet
CrossRef
- X.-J. Li, The positivity of a sequence of numbers
and the Riemann hypothesis, J. Number Theory 65 (1997), 325-333.
MathSciNet
CrossRef
- J. Liu and Y. Ye, Perron's formula and the Prime Number
Theorem for automorphic L-functions, Pure Appl. Math. Q.
3 (2007), 481-497.
MathSciNet
CrossRef
- J. Liu and Y. Ye, Zeros of automorphic L-functions and noncyclic base change, in: Number Theory: Tradition and Modernization, Springer, New York, 2006, 119-152.
MathSciNet
- K. Maslanka, Li's criterion for the Riemann
hypothesis - numerical approach, Opuscula Math. 24 (2004), 103-114.
MathSciNet
- C. Moeglin and J.-L. Waldspurger, Le spectre résiduel
de GL(n), Ann. Sci. École Norm. Sup. 22 (1989), 605-674.
MathSciNet
CrossRef
- C. J. Moreno, Explicit formulas in the theory of automorphic
forms, in: Lecture Notes Math. Vol. 626, Springer, Berlin, 1977, 73-216.
MathSciNet
- M. R. Murty, Problems in Analytic Number Theory, Readings in Mathematics, GTM Springer-Verlag, 2001.
MathSciNet
- A. Odžak and L. Smajlović, On Li's
coefficients for the Rankin-Selberg L-functions, Ramanujan J. 21 (2010), 303-334.
MathSciNet
CrossRef
- Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, Duke Math. J. 81 (1996), 269-322.
MathSciNet
CrossRef
- P. Sarnak, Non-vanishing of L-functions on Re s = 1, in:
Contributions to automorphic forms, geometry, and number theory,
Johns Hopkins Univ. Press, Baltimore, 2004, 719-732.
MathSciNet
- A. Selberg, Old and new conjectures and results about a class of Dirichlet series, Collected papers, vol. II, Springer, 1991.
MathSciNet
- F. Shahidi, On nonvanishing of L-functions, Bull. Amer. Math. Soc. 2, No. 3 (1980), 462-464.
MathSciNet
CrossRef
- F. Shahidi, On certain L-functions, Amer. J. Math. 103 (1981),
297-355.
MathSciNet
CrossRef
- F. Shahidi, Fourier transforms of intertwinting
operators and Plancherel measures for GL(n), Amer. J. Math. 106 (1984),
67-111.
MathSciNet
CrossRef
- F. Shahidi, Local coefficients as Artin factors for real
grups, Duke Math. J. 52 (1985), 973-1007.
MathSciNet
CrossRef
- F. Shahidi, A proof of Langlands' conjecture on
Plancherel measures, in: Complementary series for p-adic groups,
Ann. Math. 132 (1990), 273-330.
MathSciNet
CrossRef
- L. Smajlović, On Li's criterion for the
Riemann hypotesis for the Selberg class, J. Number Theory 130 (2010), 828-851.
MathSciNet
CrossRef
- E. C. Titchmarsh, The Theory of Functions, Second ed., Oxford University Press, Oxford, 1958.
MathSciNet
Glasnik Matematicki Home Page