Glasnik Matematicki, Vol. 51, No. 1 (2016), 17-22.
ON TWO DIOPHANTINE EQUATIONS OF RAMANUJAN-NAGELL TYPE
Zhongfeng Zhang and Alain Togbé
Zhaoqing University, China and Purdue University North Central, USA
Department of Mathematics, Purdue University North Central, 1401 S. U.S. 421 Westville IN 46391, USA
e-mail: atogbe@pnc.edu
Abstract.
In this paper, we prove two conjectures of Ulas ([21]) on two Diophantine equations of Ramanujan-Nagell type. In fact, we show that the following equations
x2+(2m+1+1)2n=24(m+1)+23(m+1)+22m+2m+1+1,
x2+(22m+6-1)2n/3 = (49 · 42m+5-11· 4m+3+1)/9
have exactly four solutions.
2010 Mathematics Subject Classification.
11D41.
Key words and phrases. Diophantine equation.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.1.02
References:
- F. S. Abu Muriefah and Y. Bugeaud, The Diophantine equation x 2+c=y n: a brief overview, Rev. Colombiana Mat. 40 (2006), 31-37.
MathSciNet
- R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris, Sér. A 251 (1960), 1451-1452.
MathSciNet
- S. A. Arif and F. S. Abu Muriefah, The Diophantine equation x2+q2k=y n, Arab. J. Sci. Eng. Sect. A Sci. 26 (2001), 53-62.
MathSciNet
- M. Bauer, M. Bennett, Applications of the hypergeometric method to the generalized
Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209-270.
MathSciNet
CrossRef
- F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1980/1981), 389-410.
MathSciNet
- F. Beukers, On the generalized Ramanujan-Nagell equation II, Acta Arith. 39 (1981), 113-123.
MathSciNet
- Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell equation, Compos. Math. 142 (2006), 31-62.
MathSciNet
CrossRef
- Y. Bugeaud and T. N. Shorey, On the number of solutions of the generalized Ramanujan-Nagell equation, J. Reine Angew. math. 539 (2001), 55-74.
MathSciNet
CrossRef
- J. H. E. Cohn, The Diophantine Equation x2+C=yn, Acta. Arith. 65 (1993), 367-381.
MathSciNet
- A. Y. Khinchin, Continued fractions, P. Noordhoff Ltd., Groningen, 1963, 3rd edition.
- C. Ko, On the Diophantine equation x2= yn +1, xy≠ 0, Sci. Sinica 14 (1965), 457-460.
MathSciNet
- M. Le, A note on the number of solutions of the generalized Ramanujan-Nagell equation x2 - D = kn, Acta Arith., 78 (1996), 11-18.
MathSciNet
- V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'équation xm = y2+1 Nouv. Annal. des Math. 9 (1850), 178-181.
- E. Goins, F. Luca, A. Togbé On the Diophantine equation
x 2+2α · 5β · 13γ = yn, ANTS VIII Proceedings: A.J. van der Poorten and A. Stein (eds.), ANTS VIII, Lecture Notes in Computer Science 5011 (2008), 430-442.
MathSciNet
CrossRef
- M. Mignotte and B. M. M. de Weger, On the Diophantine equations x2+74=y5 and x2+86=y5, Glasgow Math. J. 38 (1996), 77-85.
MathSciNet
CrossRef
- T. Nagell, The Diophantine Equation x2+7=2n, Ark. Math. 4 (1961), 185-187.
MathSciNet
CrossRef
- N. Tzanakis and J. Wolfskill, On the diophantine equation y2 = 4qn + 4q + 1, J. Number Theory 23 (1986), 219-237.
MathSciNet
CrossRef
- N. Saradha and A. Srinivasan, Generalized Lebesgue-Ramanujan-Nagell equations, in: Diophantine
equations, 207-223, Tata Inst. Fund. Res., Mumbai, 2008.
MathSciNet
- J. Stiller, The Diophantine equation x2 + 119 = 15 · 2n has exactly six solutions, Rocky
Mountain J. Math. 26 (1996), 295-298.
MathSciNet
CrossRef
- N. Tzanakis, On the Diophantine equation y2 - D = 2k, J. Number Theory 17 (1983), 144-164.
MathSciNet
CrossRef
- M. Ulas, Some experiments with Ramanujan-Nagell type Diophantine equations, Glas. Mat. Ser. III 49 (2014), 287-302.
MathSciNet
CrossRef
Glasnik Matematicki Home Page