Glasnik Matematicki, Vol. 50, No. 2 (2015), 489-512.

MORE ON INDUCED MAPS ON N-FOLD SYMMETRIC PRODUCT SUSPENSIONS

Franco Barragán, Sergio Macías and Jesús F. Tenorio

Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima, Km. 2.5, Huajuapan de León, Oaxaca, C. P. 69000, México
e-mail: franco@mixteco.utm.mx

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D. F., C. P. 04510, México
e-mail: sergiom@matem.unam.mx

Current address: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D. F., C. P. 04510, México
Permanent address: Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Carretera a Acatlima, Km. 2.5, Huajuapan de León, Oaxaca, C. P. 69000, México
e-mail: jtenorio@mixteco.utm.mx


Abstract.   We continue the work initiated by the first named author in Induced maps on n-fold symmetric product suspensions, Topology Appl. 158 (2011), 1192-1205. We consider classes of maps not included in the mentioned paper, namely: almost monotone, atriodic, freely decomposable, joining, monotonically refinable, refinable, semi-confluent, semi-open, simple and strongly freely decomposable maps.

2010 Mathematics Subject Classification.   54B20, 54E40, 54F15.

Key words and phrases.   Almost monotone map, atriodic map, continuum, ε-map, freely decomposable map, hyperspace, joining map, monotone map, monotonically refinable map, refinable map, semi-confluent map, semi-open map, simple map and strongly freely decomposable map.


Full text (PDF) (free access)

DOI: 10.3336/gm.50.2.15


References:

  1. F. Barragán, On the n-fold symmetric product suspensions of a continuum, Topology Appl. 157 (2010), 597-604.
    MathSciNet     CrossRef

  2. F. Barragán, Induced maps on n-fold symmetric product suspensions, Topology Appl. 158 (2011), 1192-1205.
    MathSciNet     CrossRef

  3. F. Barragán, Aposyndetic properties of the n-fold symmetric product suspension of a continuum, Glas. Mat. Ser. III 49(69) (2014), 179-193.
    MathSciNet     CrossRef

  4. J. Camargo and S. Macías, On freely decomposable maps, Topology Appl. 159 (2012), 891-899.
    MathSciNet     CrossRef

  5. J. J. Charatonik, On feebly monotone and related classes of mappings, Topology Appl. 105 (2000), 15-29.
    MathSciNet     CrossRef

  6. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
    MathSciNet    

  7. G. R. Gordh, Jr. and C. B. Hughes, On freely decomposable mappings of continua, Glas. Mat. Ser. III 14(34) (1979), 137-146.
    MathSciNet    

  8. H. Hosokawa, Induced mappings on hyperspaces, Tsukuba J. Math. 21 (1997), 239-250.
    MathSciNet    

  9. G. Higuera and A. Illanes, Induced mappings on symmetric products, Topology Proc. 37 (2010), 367-401.
    MathSciNet    

  10. S. Macías, On symmetric products of continua, Topology Appl. 92 (1999), 173-182.
    MathSciNet     CrossRef

  11. S. Macías, Aposyndetic properties of symmetric products of continua, Topology Proc. 22 (1997), 281-296.
    MathSciNet    

  12. S. Macías, Induced maps on n-fold hyperspace suspensions, Topology Proc. 28 (2004), 143-152.
    MathSciNet    

  13. S. Macías, Topics on continua, Chapman & Hall/CRC, Boca Raton, 2005.
    MathSciNet     CrossRef

  14. J. M. Martínez-Montejano, Mutual aposyndesis of symmetric products, Topology Proc. 24 (1999), 203-213.
    MathSciNet    

  15. S. B. Nadler, Jr., Hyperspaces of sets, Marcel Dekker, New York, Basel, 1978. Reprinted in: Aportaciones Matemáticas de la Sociedad Matemática Mexicana, Serie Textos # 33, 2006.
    MathSciNet    

  16. S. B. Nadler, Jr., A fixed point theorem for hyperspace suspensions, Houston J. Math. 5 (1979), 125-132.
    MathSciNet    

Glasnik Matematicki Home Page