Glasnik Matematicki, Vol. 50, No. 2 (2015), 467-488.
MORE ON STRONG SIZE PROPERTIES
Sergio Macías and César Piceno
Instituto de Matemáticas, Universidad
Nacional Autónoma de México,
Circuito Exterior, Ciudad Universitaria,
México D. F., C. P. 04510,
México
e-mail: sergiom@matem.unam.mx
e-mail: cesarpicman@hotmail.com
Abstract.
We continue our study of strong size maps. We show that strong size
levels for the n-fold hyperspace of a continuum contain (n-1)-cells.
We give two constructions of strong size maps. We introduce reversible
strong size properties. We prove that each of the following properties:
being a continuum chainable continuum, being a locally connected continuum,
and being a continuum with the property of Kelley, is a reversible strong
size property. Following Professors Goodykoontz and Nadler, we define
admissible strong size maps and show that the levels of admissible strong
size maps for the n-fold hyperspace of a locally connected continuum
are homeomorphic to the Hilbert cube. Professor Benjamín Espinoza
defined Whitney preserving maps for
the hyperspace of subcontinua of a continuum. We
define strong size preserving maps and show that this class of maps
coincides with the class of homeomorphisms.
2010 Mathematics Subject Classification.
54B20.
Key words and phrases. Absolute retract, acyclic continuum,
admissible strong size map,
continuum, continuum chainable continuum, Hilbert cube,
n-fold hyperspace, n-fold symmetric product, retract, retraction,
reversible strong size property,
strong size level, strong
size map, strong size properties.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.2.14
References:
- R. H. Bing,
Partitioning a set,
Bull. Amer. Math. Soc. 55 (1949), 1101-1110.
MathSciNet
CrossRef
- K. Borsuk, Theory of retracts, Monogr. Mat. 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967.
MathSciNet
- K. Borsuk and S. Ulam,
On symmetric products of topological spaces,
Bull. Amer. Math. Soc. 37 (1931), 875-882.
MathSciNet
CrossRef
- T. A. Chapman, Lectures on Hilbert cube manifolds,
American Mathematical Society, Providence, 1976.
MathSciNet
CrossRef
- J. J. Charatonik, A. Illanes and S. Macías,
Induced mappings on the hyperspaces Cn(X) of a
continuum X, Houston J. Math. 28 (2002), 781-805.
MathSciNet
- J. J. Charatonik and S. Macías,
Mappings of some hyperspaces,
JP J. Geom. Topol. 4 (2004), 53-80.
MathSciNet
- D. W. Curtis and R. M. Schori,
Hyperspaces which characterize simple homotopy type,
General Topology and Appl. 6 (1976), 153-165.
MathSciNet
CrossRef
- B. Espinoza Reyes, Whitney preserving functions,
Topology Appl. 126 (2002), 351-358.
MathSciNet
CrossRef
- J. T. Goodykoontz and S. B. Nadler, Jr.,
Whitney levels in hyperspaces of certain Peano continua,
Trans. Amer. Math. Soc. 274 (1982), 671-694.
MathSciNet
CrossRef
- H. Hosokawa, Induced mappings on
hyperspaces, Tsukuba J. Math. 21 (1997), 239-250.
MathSciNet
- H. Hosokawa,
Strong size levels of Cn(X),
Houston J. Math. 37 (2011), 955-965.
MathSciNet
- A. Illanes, Monotone and open Whitney
maps, Proc. Amer. Math. Soc. 98 (1986), 516-518.
MathSciNet
CrossRef
- A. Illanes, S. Macías and S. B. Nadler, Jr.,
Symmetric products and Q-manifolds, in Geometry and
topology in dynamics, American Mathematical Society, Providence, 1999, 137-141.
MathSciNet
CrossRef
- A. Illanes and S. B. Nadler, Jr.
Hyperspaces. Fundamentals and recent advances,
Marcel Dekker, New York, 1999.
MathSciNet
- J. W. Jaworowski, Symmetric products of ANR's,
Math. Ann. 192 (1971), 173-176.
MathSciNet
CrossRef
- S. Macías,
Topics on continua,
Chapman & Hall/CRC, Boca Raton, 2005.
MathSciNet
CrossRef
- S. Macías and C. Piceno, Strong size properties,
Glas. Mat. Ser. III 48(68) (2013), 103-114.
MathSciNet
CrossRef
- E. E. Moise,
Grille decomposition and convexification theorems for compact metric locally connected continua,
Bull. Amer. Math. Soc. 55 (1949), 1111-1121.
MathSciNet
CrossRef
- S. B. Nadler, Jr.,
Hyperspaces of sets,
Marcel Dekker,
New York, Basel, 1978. Reprinted in: Aportaciones Matemáticas de la Sociedad
Matemática Mexicana, Serie Textos # 33, 2006.
MathSciNet
- S. B. Nadler, Jr., Continuum theory: an introduction,
Marcel Dekker, New York, Basel, Hong Kong, 1992.
MathSciNet
- H. Toruńczyk,
On CE-images of the Hilbert cube and characterization of Q-manifolds,
Fund. Math. 106 (1980), 31-40.
MathSciNet
- H. Whitney, On regular families of curves I,
Proc. Nat. Acad. Sci. 18 (1932), 275-278.
CrossRef
- M. Wojdisławski, Rétractes absolus et hyperspaces des continus, Fund. Math. 32 (1939), 184-192.
Glasnik Matematicki Home Page