Glasnik Matematicki, Vol. 50, No. 2 (2015), 441-451.
CLASSIFICATION OF FACTORABLE SURFACES IN THE PSEUDO-GALILEAN SPACE
Muhittin Evren Aydin, Alper Osman Öğrenmiş and Mahmut Ergüt
Department of Mathematics, Firat University, 23 200 Elazig, Turkey
e-mail: meaydin@firat.edu.tr
Department of Mathematics, Firat University, 23 200 Elazig, Turkey
e-mail: aogrenmis@firat.edu.tr
Department of Mathematics, Namik Kemal University, 59 000 Tekirdag, Turkey
e-mail: mergut@nku.edu.tr
Abstract.
In this paper, we introduce the factorable surfaces in
the pseudo-Galilean space G31 and completely classify such
surfaces with null Gaussian and mean curvature. Also, in a special case, we
investigate the factorable surfaces which fulfill the condition that the
ratio of the Gaussian curvature and the mean curvature is constant in G31.
2010 Mathematics Subject Classification.
53A35, 53B30.
Key words and phrases. Factorable surface, Gaussian curvature, mean curvature, minimal surface, pseudo-Euclidean plane, pseudo-Galilean space.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.2.12
References:
- M. E. Aydin and A. Mihai,
Classifications of quasi-sum production functions with Allen determinants,
Filomat 29(6) (2015), 1351-1359.
CrossRef
- M. Bekkar and B. Senoussi,
Factorable surfaces in the
three-dimensional Euclidean and Lorentzian spaces satisfying ∆ ri=Λ iri,
J. Geom. 103 (2012), 17-29.
MathSciNet
CrossRef
- B. Divjak and Ž. M. Šipuš,
Some special surfaces in the pseudo-Galilean space,
Acta Math. Hungar. 118 (2008), 209-226.
MathSciNet
CrossRef
- B. Divjak and Ž. M. Šipuš,
Minding isometries of ruled surfaces in pseudo-Galilean space,
J. Geom. 77 (2003), 35-47.
MathSciNet
CrossRef
- B. Divjak and Ž. M. Šipuš,
Special curves on ruled surfaces in Galilean and pseudo-Galilean spaces,
Acta Math. Hungar. 98 (2003), 203-215.
MathSciNet
CrossRef
- B.-Y. Chen,
Geometry of submanifolds,
M. Dekker, New York, 1973.
MathSciNet
- M. P. do Carmo,
Differential geometry of curves and surfaces,
Prentice Hall, Englewood Cliffs, NJ, 1976.
MathSciNet
- C. T. R. Conley, R. Etnyre, B. Gardener, L. H. Odom and B.
D. Suceavă,
New curvature inequalities for hypersurfaces in the Euclidean ambient space,
Taiwanese J. Math. 17(3) (2013), 885-895.
MathSciNet
- M. Dede,
Tubular surfaces in Galilean space,
Math. Commun. 18 (2013), 209-217.
MathSciNet
- I. Kamenarović,
Existence theorems for ruled surfaces in the Galilean space G3,
Rad Hrvatske Akad. Znan. Umjet. No. 456 (1991), 183-196.
MathSciNet
- M. K. Karacan and Y. Tuncer,
Tubular surfaces of Weingarten types in Galilean and pseudo-Galilean,
Bull. Math. Anal. Appl. 5 (2013), 87-100.
MathSciNet
- H. Meng and H. Liu,
Factorable surfaces in 3-Minkowski space,
Bull. Korean Math. Soc. 46 (2009), 155-169.
MathSciNet
CrossRef
- Ž. Milin Šipuš,
Ruled Weingarten surfaces in the Galilean space,
Period. Math. Hungar. 56 (2008), 213-225.
MathSciNet
CrossRef
- Ž. Milin Šipuš and B. Divjak,
Translation surface in the Galilean space,
Glas. Mat. Ser. III 46(66) (2011), 455-469.
MathSciNet
CrossRef
- Ž. Milin Šipuš and B. Divjak,
Surfaces of constant curvature in the pseudo-Galilean space,
Int. J. Math. Math. Sci. 2012, Art ID375264, 28pp.
MathSciNet
- A. O. Öğrenmiş, M. Ergüt and M. Bektaş,
On the helices in the Galilean space G3,
Iran. J. Sci. Technol. Trans. A Sci. 31 (2007), 177-181.
MathSciNet
- A. O. Öğrenmiş and M. Ergüt,
On the Gauss map of ruled surfaces of type II in 3-dimensional pseudo-Galilean space,
Bol. Soc. Parana. Mat. (3) 31 (2013), 145-152.
MathSciNet
CrossRef
- E. Turhan, G. Altay,
Maximal and minimal surfaces of factorable surfaces in Heis3,
Int. J. Open Probl. Comput. Sci. Math. 3 (2010), 200-212.
MathSciNet
- G. E. Vilcu,
A geometric perspective on the generalized Cobb-Douglas production functions,
Appl. Math. Lett. 24 (2011), 777-783.
MathSciNet
CrossRef
- D. W. Yoon,
Surfaces of revolution in the three dimensional pseudo-Galilean space,
Glas. Mat. Ser. III 48(68) (2013), 415-428.
MathSciNet
CrossRef
- Y. Yu and H. Liu,
The factorable minimal surfaces,
in Proceedings of the Eleventh International Workshop on Differential Geometry, Kyungpook Nat. Univ., Taegu, 2007, 33-39.
Glasnik Matematicki Home Page