Glasnik Matematicki, Vol. 50, No. 2 (2015), 415-427.
ON EXCESSES OF FRAMES
Damir Bakić and Tomislav Berić
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: dbakic@math.hr
e-mail: tberic@math.hr
Abstract.
We show that any two frames in a separable Hilbert space that are dual to each other have the same excess. Some new relations for the analysis resp. synthesis operators of dual frames are also derived. Then we prove that pseudo-dual frames and, in particular, approximately dual frames have the same excess. We also discuss various results on frames in which excesses of frames play an important role.
2010 Mathematics Subject Classification.
42C15.
Key words and phrases. Frame, Parseval frame, excess.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.2.10
References:
- J. Antezana, G. Corach, M. Ruiz and D. Stojanoff, Oblique projections and frames, Proc. Amer. Math. Soc.
134 (2006), 1031-1037.
MathSciNet
CrossRef
- D. Bakić and T. Berić, Finite extensions of Bessel sequences,
arXiv:1308.5709v1.
MathSciNet
CrossRef
- R. Balan, P.G. Casazza, D. Edidin and G. Kutyniok, A new identity for Parseval frames, Proc. Amer. Math. Soc.
135 (2007), 1007-1015.
MathSciNet
CrossRef
- R. Balan, P.G. Casazza and Z. Landau, Redundancy for localized frames, Israel J. Math. 185 (2011), 445-476.
MathSciNet
CrossRef
- R. Balan and Z. Landau, Measure functions for frames, J. Funct. Anal. 252 (2007), 630-676.
MathSciNet
CrossRef
- R. Balan, P.G. Casazza, C. Heil and Z. Landau, Deficits and excesses of frames, Adv. Comput. Math.
Special Issue on Frames, 18 (2003), 93-116.
MathSciNet
CrossRef
- P.G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), 129-201.
MathSciNet
- P.G. Cassaza and O. Christensen, Frames containing a Riesz basis and preservation of this property under perturbations,
SIAM J. Math. Anal. 29 (1998), 266-278.
MathSciNet
CrossRef
- P.G. Cassaza and O. Christensen, Perturbations of operators and applications to frame theory,
J. Fourier Anal. Appl. 3 (5) (1997) 543-557.
MathSciNet
CrossRef
- O. Christensen, An introduction to frames and Riesz bases, Birkäuser, 2003.
MathSciNet
CrossRef
- O. Christensen, A Paley-Wiener theorem for frames, Proc. Amer. Math. Soc. 123 (1995), 2199-2201.
MathSciNet
CrossRef
- O. Christensen and R.S. Laugesen, Approximately dual frames in Hilbert spaces and applications to Gabor frames,
http://arxiv.org/abs/0811.3588v1.
- I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992.
MathSciNet
CrossRef
- R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
MathSciNet
CrossRef
- P. Găvruţa, On some identities and inequalities for frames in Hilbert spaces, J. Math. Anal. Appl. 321 (2006), 469-478.
MathSciNet
CrossRef
- D. Han, Frame representations and Parseval duals with applications to Gabor frames, Trans. Amer. Math. Soc. 360 (2008), 3307-3326.
MathSciNet
CrossRef
- C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666.
MathSciNet
CrossRef
- J. Holub, Pre-frame operators, Besselian frames and near-Riesz bases in Hilbert spaces, Proc. Amer. Math. Soc.
122 (1994), 779-785.
MathSciNet
CrossRef
Glasnik Matematicki Home Page