Glasnik Matematicki, Vol. 50, No. 2 (2015), 397-414.
K-INVARIANTS IN THE ALGEBRA U(𝔤) ⊗ C(𝔭) FOR THE GROUP SU(2,1)
Ana Prlić
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: anaprlic@math.hr
Abstract.
Let 𝔤 = 𝔨 ⊕ 𝔭 be the Cartan decomposition of the complexified Lie algebra 𝔤 =𝔰𝔩 (3,C) of the group G=SU(2,1). Let
K=S(U(2)× U(1)), so K is a maximal compact subgroup of G. Let U(𝔤) be the universal enveloping algebra of 𝔤, and let C(𝔭) be the Clifford algebra with respect to the trace form B(X,Y)=tr(XY) on 𝔭.
We are going to prove that the algebra of K-invariants in U(𝔤) ⊗ C(𝔭) is generated by five explicitly given elements. This is useful for studying algebraic Dirac induction for (𝔤,K)-modules. Along the way we will also recover the (well known) structure of the algebra U(𝔤)K.
2010 Mathematics Subject Classification.
22E47, 22E46.
Key words and phrases. Lie group, Lie algebra, representation, special unipotent representation, Dirac operator, Dirac cohomology.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.2.09
References:
- A. Alekseev and E. Meinrenken,
Lie theory and the Chern-Weil homomorphism,
Ann. Sci. Ecole. Norm. Sup. 38 (2005), 303-338.
MathSciNet
CrossRef
- D. Barbasch, D. Ciubotaru and P.E. Trapa,
Dirac cohomology for graded affine Hecke algebras,
Acta Math. 209 (2012), 197-227.
MathSciNet
CrossRef
- D. Barbasch and P. Pandžić,
Dirac cohomology and unipotent representations of complex groups,
in: Noncommutative Geometry and Global Analysis, eds. A. Connes, A. Gorokhovsky, M. Lesch, M. Pflaum, B. Rangipour, Contemporary Mathematics, vol. 546, American Mathematical Society, 2011, 1-22.
MathSciNet
CrossRef
- D. Barbasch and P. Pandžić,
Dirac cohomology of unipotent representations of Sp(2n,R) and U(p,q),
J. Lie Theory 25 (2015), 185-213.
MathSciNet
- C. Chevalley,
Invariants of finite groups generated by reflections,
Amer. J. Math. 77 (1955), 778-782.
MathSciNet
CrossRef
- Harish-Chandra,
Representations of semisimple Lie groups. II,
Trans. Amer. Math. Soc. 76 (1954), 26-65.
MathSciNet
CrossRef
- J.-S. Huang, Y.-F. Kang and P. Pandžić,
Dirac cohomology of some Harish-Chandra modules,
Transform. Groups 14 (2009), 163-173.
MathSciNet
CrossRef
- J.-S. Huang and P. Pandžić,
Dirac cohomology, unitary representations and a proof of a conjecture of Vogan,
J. Amer. Math. Soc. 15 (2002), 185-202.
MathSciNet
CrossRef
- J.-S. Huang and P. Pandžić,
Dirac Operators in Representation Theory,
Mathematics: Theory and Applications, Birkhauser, 2006.
MathSciNet
- J.-S. Huang, P. Pandžić,
Dirac cohomology for Lie superalgebras,
Transform. Groups 10 (2005), 201-209.
MathSciNet
CrossRef
- J.-S. Huang, P. Pandžić and V. Protsak,
Dirac cohomology of Wallach representations, Pacific J. Math. 250 (2011), 163-190.
MathSciNet
CrossRef
- J.-S. Huang, P. Pandžić and D. Renard,
Dirac operators and Lie algebra cohomology,
Represent. Theory 10 (2006), 299-313.
MathSciNet
CrossRef
- J.-S. Huang, P. Pandžić and F. Zhu,
Dirac cohomology, K-characters and branching laws,
Amer. J. Math. 135 (2013), no.5, 1253-1269.
MathSciNet
CrossRef
- K. D. Johnson,
The centralizer of a Lie algebra in an enveloping algebra,
J. reine angew. Math. 395 (1989) 196-201.
MathSciNet
CrossRef
- V. Kac, P. Möseneder Frajria and P. Papi,
Multiplets of representations, twisted Dirac operators and Vogan's conjecture in affine setting,
Adv. Math. 217 (2008), 2485-2562.
MathSciNet
CrossRef
- F. Knop,
A Harish-Chandra homomorphism for reductive group actions,
Ann. of Math. (2) 140 (1994), 253-288.
MathSciNet
CrossRef
- B. Kostant,
Lie group representations on polynomial rings,
Amer. J. Math. 85 (1963), 327-404.
MathSciNet
CrossRef
- B. Kostant,
Dirac cohomology for the cubic Dirac operator,
Studies in Memory of Issai Schur, Progress in Mathematics, Vol. 210 (2003), 69-93.
MathSciNet
- B. Kostant and S. Rallis,
Orbits and representations associated with symmetric spaces,
Amer. J. Math. 93 (1971), 753-809.
MathSciNet
CrossRef
- S. Kumar,
Induction functor in noncommutative equivariant cohomology and Dirac cohomology,
J. Algebra 291 (2005), 187-207.
MathSciNet
CrossRef
- J. Lepowsky and G. W. McCollum,
On the determination of irreducible modules by restriction to a subalgebra,
Trans. Amer. Math. Soc. 176 (1973), 45-57.
MathSciNet
CrossRef
- P. Pandžić and D. Renard,
Dirac induction for Harish-Chandra modules,
J. Lie Theory 20 (2010), 617-641.
MathSciNet
- R. Parthasarathy,
Dirac operator and the discrete series,
Ann. of Math. 96 (1972), 1-30.
MathSciNet
CrossRef
- R. Parthasarathy,
Criteria for the unitarizability of some highest weight modules,
Proc. Indian Acad. Sci. 89 (1980), 1-24.
MathSciNet
CrossRef
- A. Prlić,
Algebraic Dirac induction for nonholomorphic discrete series of SU(2,1),
Ph.D. thesis, University of Zagreb, 2014.
- D. A. Vogan, Jr.,
Dirac operators and unitary representations,
3 talks at MIT Lie groups seminar, Fall 1997.
Glasnik Matematicki Home Page