Glasnik Matematicki, Vol. 50, No. 2 (2015), 373-396.
THE VARIETY GENERATED BY ALL MONOIDS OF ORDER FOUR IS FINITELY BASED
Edmond W. H. Lee and Jian Rong Li
Department of Mathematics, Nova Southeastern University, Fort Lauderdale, Florida 33314, USA
e-mail: edmond.lee@nova.edu
School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
e-mail: lijr@lzu.edu.cn
Dedicated to Professor Mikhail V. Volkov on the occasion of his 60th birthday
Abstract.
It is known that the variety Mn generated by all monoids of order n is finitely based if n ≤ 3 and non-finitely based if n ≥ 6.
The present article establishes the finite basis property of the variety M4.
This leaves M5 as the last open case in the finite basis problem for the varieties Mn.
2010 Mathematics Subject Classification.
20M07.
Key words and phrases. Monoid, semigroup, variety, finitely based.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.2.08
References:
- J. Almeida, Finite semigroups and universal algebra, World Scientific, Singapore, 1994.
MathSciNet
- A. P. Birjukov, Varieties of idempotent semigroups, Algebra i Logika 9 (1970), 255-273 (in Russian); English transl.: Algebra and Logic 9 (1970), 153-164.
MathSciNet
- A. Distler and J. D. Mitchell, Smallsemi - a GAP package, version 0.6.6, 2013, available at http://www.gap-system.org/Packages/smallsemi.html
- C. C. Edmunds, On certain finitely based varieties of semigroups, Semigroup Forum 15 (1977/78), 21-39.
MathSciNet
CrossRef
- C. C. Edmunds, Varieties generated by semigroups of order four, Semigroup Forum 21 (1980), 67-81.
MathSciNet
CrossRef
- C. F. Fennemore, All varieties of bands. I, II, Math. Nachr. 48 (1971), 237-252; ibid., 253-262.
MathSciNet
CrossRef
- J. A. Gerhard, The lattice of equational classes of idempotent semigroups, J. Algebra 15 (1970), 195-224.
MathSciNet
CrossRef
- M. Jackson, Finite semigroups whose varieties have uncountably many subvarieties, J. Algebra 228 (2000), 512-535.
MathSciNet
CrossRef
- E. W. H. Lee, Hereditarily finitely based monoids of extensive transformations, Algebra Universalis 61 (2009), 31-58.
MathSciNet
CrossRef
- E. W. H. Lee, Varieties generated by 2-testable monoids, Studia Sci. Math. Hungar. 49 (2012), 366-389.
MathSciNet
CrossRef
- E. W. H. Lee, Finite basis problem for semigroups of order five or less: generalization and revisitation, Studia Logica 101 (2013), 95-115.
MathSciNet
CrossRef
- E. W. H. Lee and J. R. Li, Minimal non-finitely based monoids, Dissertationes Math. (Rozprawy Mat.) 475 (2011), 65 pp.
MathSciNet
CrossRef
- E. W. H. Lee and W. T. Zhang, Finite basis problem for semigroups of order six, LMS J. Comput. Math. 18 (2015), 1-129
MathSciNet
CrossRef
- J. R. Li and Y. F. Luo, Equational property of certain transformation monoids, Internat. J. Algebra Comput. 20 (2010), 833-845.
MathSciNet
CrossRef
- J. R. Li, W. T. Zhang, and Y. F. Luo, On the finite basis problem for the variety generated by all n-element semigroups, Algebra Universalis 73 (2015), 225-248.
MathSciNet
CrossRef
- Y. F. Luo and W. T. Zhang, On the variety generated by all semigroups of order three, J. Algebra 334 (2011), 1-30.
MathSciNet
CrossRef
- S. Oates and M. B. Powell, Identical relations in finite groups, J. Algebra 1 (1964), 11-39.
MathSciNet
CrossRef
- P. Perkins, Bases for equational theories of semigroups, J. Algebra 11 (1969), 298-314.
MathSciNet
CrossRef
- M. V. Sapir, Problems of Burnside type and the finite basis property in varieties of semigroups,
Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 319-340 (in Russian); English transl.: Math. USSR-Izv. 30 (1988), 295-314.
MathSciNet
- L. N. Shevrin and M. V. Volkov, Identities of semigroups, Izv. Vyssh. Uchebn. Zaved. Mat. 1985(11), 3-47 (in Russian); English transl.: Soviet Math. (Iz. VUZ) 29(11) (1985), 1-64.
MathSciNet
- The on-line encyclopedia of integer sequences, http://oeis.org/A058129
- A. N. Trahtman, Finiteness of a basis of identities of five-element semigroups, in: Semigroups and their homomorphisms (ed. E. S. Lyapin), Ross. Gos. Ped. Univ., Leningrad, 1991, 76-97 (in Russian).
MathSciNet
- M. V. Volkov, The finite basis property of varieties of semigroups, Mat. Zametki 45 (1989), 3, 12-23 (in Russian); English transl.: Math. Notes 45 (1989), 187-194.
MathSciNet
- M. V. Volkov, The finite basis problem for finite semigroups, Sci. Math. Jpn. 53 (2001), 171-199.
MathSciNet
- M. V. Volkov, Reflexive relations, extensive transformations and piecewise testable languages of a given height, Internat. J. Algebra Comput. 14 (2004), 817-827.
MathSciNet
CrossRef
Glasnik Matematicki Home Page