Glasnik Matematicki, Vol. 50, No. 2 (2015), 349-361.
ON APPROXIMATION CONSTANTS FOR LIOUVILLE NUMBERS
Johannes Schleischitz
Institute of Mathematics, Univ. Nat. Res. Life Sci., Gregor-Mendel-Strasse 33, Vienna, 1180, Austria
e-mail: johannes.schleischitz@boku.ac.at
Abstract.
We investigate some Diophantine approximation constants
related to the simultaneous approximation of (ζ,ζ2, ...,ζk) for
Liouville numbers ζ. For a certain class of Liouville numbers including the
famous representative ∑n≥ 1 10-n! and numbers in
the Cantor set, we explicitly determine all
approximation constants simultaneously for all k≥ 1.
2010 Mathematics Subject Classification.
11J13, 11J25, 11J82.
Key words and phrases. Geometry of numbers, successive minima, Liouville numbers, Diophantine approximation.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.2.06
References:
- V. Beresnevich, D. Dickinson and S. Velani, Measure theoretic laws for lim sup sets,
Mem. Amer. Math. Soc. 179 (2006), no. 846.
MathSciNet
CrossRef
- V. Beresnevich, D. Dickinson and S. L. Velani, Diophantine approximation on planar
curves and the distribution of rational points with an appendix by R.C. Vaughan,
Sums of two squares near perfect squares, Ann. Math. (2) 166 (2007), 367-426.
MathSciNet
CrossRef
- Y. Bugeaud, On simultaneous rational approximation to a real numbers and its integral powers,
Ann. Inst. Fourier (Grenoble) 60 (2010), 2165-2182.
MathSciNet
CrossRef
- Y. Bugeaud and M. Laurent, Exponents of Diophantine Approximation and Sturmian
Continued Fractions, Ann. Inst. Fourier (Grenoble) 55 (2005), 773-804.
MathSciNet
CrossRef
- Y. Bugeaud, Nombres de Liouville et nombres normaux, C. R. Math. Acad.
Sci. Paris, 335 (2002), 117-120.
MathSciNet
CrossRef
- V. Jarník, Contribution á la théorie des approximations diophantiennes linéaires et homogénes,
Czech Math. J. 4(79) (1954), 330-353.
MathSciNet
- A. Y. Khintchine, Zur metrischen Theorie der diophantischen Approximationen,
Math. Z. 24 (1926), 706-714
MathSciNet
CrossRef
- D. Kleinbock, Extremal subspaces and their submanifolds,
Geom. Funct. Anal. 13 (2003), 437-466.
MathSciNet
CrossRef
- M. Laurent, Simultaneous rational approximation to successive powers of a real number,
Indag. Math. (N.S.) 14 (2003), 45-53.
MathSciNet
CrossRef
- K. Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus. I, J. Reine Angew. Math. 166 (1932), 118-136.
MathSciNet
CrossRef
- K. Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus. II, J. Reine Angew. Math. 166 (1932), 137-150.
MathSciNet
CrossRef
- H. Minkowski, Geometrie der Zahlen, Bibliotheca Mathematica Teubneriana, New York-London, 1968.
MathSciNet
- K.F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20.
MathSciNet
CrossRef
- D. Roy, Diophantine approximation in small degree,
Number theory, E.Z. Goren and H. Kisilevsky Eds, CRM Proceedings and Lecture Notes, 2004,
p. 269-285.
MathSciNet
- D. Roy, On simultaneous rational approximations to a real number, its square and its cube,
Acta Artih. 133 (2008), 185-197.
MathSciNet
CrossRef
- D. Roy, On Schmidt and Summerer parametric geometry of numbers, arXiv: 1406.3669.
- D. Roy, Construction of points realizing the regular systems of Wolfgang Schmidt and
Leonhard Summerer, arXiv:1406.3669
- D. Roy, Spectrum of the exponents of best rational approximation, arXiv:1410.1007.
- J. Schleischitz, Diophantine approximation and special Liouville numbers,
Commun. Math. 21 (2013), 39-76.
MathSciNet
- J Schleischitz, Two estimates concerning classical diophantine approximation constants,
Publ. Math. Debrecen, 84 (2014), 415-437.
MathSciNet
CrossRef
- J. Schleischitz, On the spectrum of Diophantine approximation constants, Mathematika, to appear.
- J. Schleischitz, Generalizations of a result of Jarnik on simultaneous approximation,
arXiv: 1410.6697.
- W. M. Schmidt, Norm form equations, Ann. of Math. (2) 96 (1972), 526-551.
MathSciNet
CrossRef
- W. M. Schmidt and L. Summerer, Parametric geometry of numbers and applications,
Acta Arith. 140 (2009), 67-91.
MathSciNet
CrossRef
- W. M. Schmidt and L. Summerer, Diophantine approximation and parametric geometry of numbers,
Monatsh. Math. 169 (2013), 51-104.
MathSciNet
CrossRef
- W. M. Schmidt and L. Summerer, Simultaneous approximation to three numbers,
Mosc. J. Comb. Number Theory 3 (2013), 84-107.
MathSciNet
- V. G. Sprindzuk, A proof of Mahler's conjecture on the measure of the set of S-numbers,
Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 379-436.
English translation in: Amer. Math. Soc. Transl. 51 (1966), 215-272.
MathSciNet
- R. C. Vaughan and S. Velani, Diophantine approximation on planar curves: the
convergence theory, Invent. Math. 166 (2006), 103-124.
MathSciNet
CrossRef
- M. Waldschmidt, Recent advances in Diophantine approximation, Number theory, analysis
and geometry, Springer, New York, 2012, p. 659-704
MathSciNet
CrossRef
Glasnik Matematicki Home Page