Glasnik Matematicki, Vol. 50, No. 2 (2015), 289-332.

DEGENERATE EISENSTEIN SERIES FOR SYMPLECTIC GROUPS

Marcela Hanzer

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: hanmar@math.hr


Abstract.   In this paper we determine the poles (in the right half-plane) with their order of the degenerate Eisenstein series attached to the representations induced from a character of the Siegel maximal parabolic subgroup of a symplectic group. We explicitly determine the image of the Eisenstein series and thus determine an automorphic realization of certain irreducible global representations of Sp2n(AQ).

2010 Mathematics Subject Classification.   11F70, 22E50.

Key words and phrases.   Automorphic representations, degenerate Eisenstein series, symplectic groups.


Full text (PDF) (free access)

DOI: 10.3336/gm.50.2.04


References:

  1. J. Arthur, The endoscopic classification of representations: orthogonal and symplectic groups, http://www.claymath.org/cw/arthur/pdf/Book.pdf.

  2. J. Arthur, Intertwining operators and residues. I. Weighted characters, J. Funct. Anal. 84 (1989), 19-84.
    MathSciNet     CrossRef

  3. J. Arthur, Intertwining operators and residues. II. Invariant distributions, Compositio Math. 70 (1989), 51-99.
    MathSciNet     CrossRef

  4. J. Arthur, Unipotent automorphic representations: global motivation, in Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Academic Press, Boston, 1990, 1-75.
    MathSciNet    

  5. J. Arthur, An introduction to the trace formula, in Harmonic analysis, the trace formula, and Shimura varieties, Amer. Math. Soc., Providence, 2005, 1-263.
    MathSciNet    

  6. A.-M. Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif p-adique, Trans. Amer. Math. Soc. 347 (1995), 2179-2189.
    MathSciNet     CrossRef

  7. A. I. Badulescu and D. A. Renard, Sur une conjecture de Tadić, Glas. Mat. Ser. III 39(59) (2004), 49-54.
    MathSciNet     CrossRef

  8. D. Ban, Linear independence of intertwining operators, J. Algebra 271 (2004), 749-767.
    MathSciNet     CrossRef

  9. A. Borel, Introduction to automorphic forms, in Algebraic groups and discontinuous subgroups, Amer. Math. Soc., Providence, 1966, 199-210.
    MathSciNet     CrossRef

  10. S. Gelbart, I. Piatetski-Shapiro and S. Rallis, Explicit constructions of automorphic L-functions, Springer-Verlag, Berlin, 1987.

  11. S. Gelbart and F. Shahidi, Analytic properties of automorphic L-functions, Academic Press, Inc., Boston, 1987.
    MathSciNet    

  12. R. Gustafson, The degenerate principal series for Sp(2n), Mem. Amer. Math. Soc. 33 (1981), vi+81.
    MathSciNet     CrossRef

  13. M. Hanzer and G. Muić, Degenerate Eisnestein series for Sp(4), J. Number Theory 146 (2015), 310-342.
    MathSciNet     CrossRef

  14. M. Hanzer and G. Muić, On the images and poles of degenerate Eisenstein series for GL(n, A) and $ GL(n, R)$, Amer. J. Math. 137 (2015), 907-951.
    MathSciNet     CrossRef

  15. M. Hanzer and G. Muić, On an algebraic approach to the Zelevinsky classification for classical p-adic groups, J. Algebra 320 (2008), 3206-3231.
    MathSciNet     CrossRef

  16. H. H. Kim, The residual spectrum of Sp4, Compositio Math. 99 (1995), 129-151.
    MathSciNet     CrossRef

  17. H. H. Kim and F. Shahidi, Quadratic unipotent Arthur parameters and residual spectrum of symplectic groups, Amer. J. Math. 118 (1996), 401-425.
    MathSciNet     CrossRef

  18. S. S. Kudla and S. Rallis, Poles of Eisenstein series and L-functions, in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Weizmann, Jerusalem, 1990, 81-110.
    MathSciNet    

  19. S. S. Kudla and S. Rallis, Ramified degenerate principal series representations for Sp(n), Israel J. Math. 78 (1992), 209-256.
    MathSciNet     CrossRef

  20. S. S. Kudla and S. Rallis, A regularized Siegel-Weil formula: the first term identity, Ann. of Math. (2) 140 (1994), 1-80.
    MathSciNet     CrossRef

  21. S. T. Lee, Degenerate principal series representations of Sp(2n,R), Compositio Math. 103 (1996), 123-151.
    MathSciNet     CrossRef

  22. C. M\oeglin and M. Tadić, Construction of discrete series for classical p-adic groups, J. Amer. Math. Soc. 15 (2002), 715-786 (electronic).
    MathSciNet     CrossRef

  23. C. M\oeglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge University Press, Cambridge, 1995.
    MathSciNet     CrossRef

  24. G. Muić, Composition series of generalized principal series; the case of strongly positive discrete series, Israel J. Math. 140 (2004), 157-202.
    MathSciNet     CrossRef

  25. G. Muić, On certain classes of unitary representations for split classical groups, Canad. J. Math. 59 (2007), 148-185.
    MathSciNet     CrossRef

  26. G. Muić, Some applications of degenerate Eisenstein series on Sp2n, J. Ramanujan Math. Soc. 23 (2008), 223-257.
    MathSciNet    

  27. G. Muić, Intertwining operators and composition series of generalized and degenerate principal series for Sp(4, R), Glas. Mat. Ser. III 44(64) (2009), 349-399.
    MathSciNet     CrossRef

  28. I. Piatetski-Shapiro and S. Rallis, Rankin triple L functions, Compositio Math. 64 (1987), 31-115.
    MathSciNet     CrossRef

  29. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47-87.
    MathSciNet    

  30. A. Selberg, Discontinuous groups and harmonic analysis, in Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 177-189.
    MathSciNet    

  31. F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), 273-330.
    MathSciNet     CrossRef

  32. F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J. 66 (1992), 1-41.
    MathSciNet     CrossRef

  33. B. Speh, Unitary representations of Gl(n, R) with nontrivial (g,K)-cohomology, Invent. Math. 71 (1983), 443-465.
    MathSciNet     CrossRef

  34. W. J. Sweet, Jr., A computation of the gamma matrix of a family of p-adic zeta integrals, J. Number Theory 55 (1995), 222-260.
    MathSciNet     CrossRef

  35. M. Tadić, Induced representations of GL(n,A) for p-adic division algebras A, J. Reine Angew. Math. 405 (1990), 48-77.
    MathSciNet     CrossRef

  36. M. Tadić, Structure arising from induction and Jacquet modules of representations of classical p-adic groups, J. Algebra 177 (1995), 1-33.
    MathSciNet     CrossRef

  37. M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29-91.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page