Glasnik Matematicki, Vol. 50, No. 2 (2015), 289-332.
DEGENERATE EISENSTEIN SERIES FOR SYMPLECTIC GROUPS
Marcela Hanzer
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: hanmar@math.hr
Abstract.
In this paper we determine the poles (in the right half-plane) with their order of the degenerate Eisenstein series attached to the representations induced from a character of the Siegel maximal parabolic subgroup of a symplectic group. We explicitly determine the image of the Eisenstein series and thus determine an automorphic realization of certain irreducible global representations of Sp2n(AQ).
2010 Mathematics Subject Classification.
11F70, 22E50.
Key words and phrases. Automorphic representations, degenerate Eisenstein series, symplectic groups.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.2.04
References:
-
J. Arthur, The endoscopic classification of representations:
orthogonal and symplectic groups,
http://www.claymath.org/cw/arthur/pdf/Book.pdf.
-
J. Arthur, Intertwining
operators and residues. I. Weighted characters, J. Funct. Anal. 84
(1989), 19-84.
MathSciNet
CrossRef
-
J. Arthur, Intertwining
operators and residues. II. Invariant distributions, Compositio Math.
70 (1989), 51-99.
MathSciNet
CrossRef
-
J. Arthur, Unipotent
automorphic representations: global motivation, in Automorphic forms,
Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI,
1988), Academic Press, Boston, 1990,
1-75.
MathSciNet
-
J. Arthur, An introduction to
the trace formula, in Harmonic analysis, the trace formula, and Shimura
varieties, Amer. Math. Soc., Providence,
2005, 1-263.
MathSciNet
-
A.-M. Aubert, Dualité dans le groupe de Grothendieck de la
catégorie des représentations lisses de longueur finie d'un groupe
réductif p-adique, Trans. Amer. Math. Soc. 347 (1995),
2179-2189.
MathSciNet
CrossRef
-
A. I. Badulescu and D. A. Renard, Sur une conjecture de Tadić,
Glas. Mat. Ser. III 39(59) (2004), 49-54.
MathSciNet
CrossRef
-
D. Ban, Linear independence of intertwining operators, J. Algebra
271 (2004), 749-767.
MathSciNet
CrossRef
-
A. Borel, Introduction to automorphic forms, in Algebraic groups
and discontinuous subgroups, Amer. Math. Soc., Providence, 1966, 199-210.
MathSciNet
CrossRef
-
S. Gelbart, I. Piatetski-Shapiro and S. Rallis, Explicit
constructions of automorphic L-functions, Springer-Verlag, Berlin, 1987.
-
S. Gelbart and F. Shahidi, Analytic properties of automorphic
L-functions, Academic Press,
Inc., Boston, 1987.
MathSciNet
-
R. Gustafson, The degenerate principal series for Sp(2n),
Mem. Amer. Math. Soc. 33 (1981), vi+81.
MathSciNet
CrossRef
-
M. Hanzer and G. Muić, Degenerate Eisnestein series for
Sp(4), J. Number Theory 146 (2015), 310-342.
MathSciNet
CrossRef
-
M. Hanzer and G. Muić, On the images and
poles of degenerate Eisenstein series for GL(n, A) and $
GL(n, R)$, Amer. J. Math. 137 (2015), 907-951.
MathSciNet
CrossRef
-
M. Hanzer and G. Muić, On an algebraic approach to the
Zelevinsky classification for classical p-adic groups, J. Algebra 320
(2008), 3206-3231.
MathSciNet
CrossRef
-
H. H. Kim, The residual spectrum of Sp4, Compositio
Math. 99 (1995), 129-151.
MathSciNet
CrossRef
-
H. H. Kim and F. Shahidi, Quadratic unipotent Arthur parameters
and residual spectrum of symplectic groups, Amer. J. Math. 118 (1996),
401-425.
MathSciNet
CrossRef
-
S. S. Kudla and S. Rallis, Poles of Eisenstein series and
L-functions, in Festschrift in honor of I. I. Piatetski-Shapiro
on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Weizmann, Jerusalem, 1990, 81-110.
MathSciNet
-
S. S. Kudla and S. Rallis, Ramified degenerate
principal series representations for Sp(n), Israel J. Math. 78
(1992), 209-256.
MathSciNet
CrossRef
-
S. S. Kudla and S. Rallis, A regularized
Siegel-Weil formula: the first term identity, Ann. of Math. (2) 140
(1994), 1-80.
MathSciNet
CrossRef
-
S. T. Lee, Degenerate principal series representations of
Sp(2n,R), Compositio Math. 103 (1996), 123-151.
MathSciNet
CrossRef
-
C. M\oeglin and M. Tadić, Construction of discrete series for
classical p-adic groups, J. Amer. Math. Soc. 15 (2002), 715-786
(electronic).
MathSciNet
CrossRef
-
C. M\oeglin and J.-L. Waldspurger, Spectral decomposition and
Eisenstein series, Cambridge
University Press, Cambridge, 1995.
MathSciNet
CrossRef
-
G. Muić, Composition series of generalized principal series; the
case of strongly positive discrete series, Israel J. Math. 140 (2004),
157-202.
MathSciNet
CrossRef
-
G. Muić, On certain classes
of unitary representations for split classical groups, Canad. J. Math. 59
(2007), 148-185.
MathSciNet
CrossRef
-
G. Muić, Some applications of
degenerate Eisenstein series on Sp2n, J. Ramanujan Math.
Soc. 23 (2008), 223-257.
MathSciNet
-
G. Muić, Intertwining
operators and composition series of generalized and degenerate principal
series for Sp(4, R), Glas. Mat. Ser. III 44(64) (2009),
349-399.
MathSciNet
CrossRef
-
I. Piatetski-Shapiro and S. Rallis, Rankin triple L functions,
Compositio Math. 64 (1987), 31-115.
MathSciNet
CrossRef
-
A. Selberg, Harmonic analysis and discontinuous groups in weakly
symmetric Riemannian spaces with applications to Dirichlet series, J.
Indian Math. Soc. (N.S.) 20 (1956), 47-87.
MathSciNet
-
A. Selberg, Discontinuous groups and harmonic analysis, in Proc.
Internat. Congr. Mathematicians (Stockholm, 1962), Inst.
Mittag-Leffler, Djursholm, 1963, 177-189.
MathSciNet
-
F. Shahidi, A proof of Langlands' conjecture on Plancherel
measures; complementary series for p-adic groups, Ann. of Math. (2) 132
(1990), 273-330.
MathSciNet
CrossRef
-
F. Shahidi, Twisted endoscopy
and reducibility of induced representations for p-adic groups, Duke
Math. J. 66 (1992), 1-41.
MathSciNet
CrossRef
-
B. Speh, Unitary representations of Gl(n, R) with
nontrivial (g,K)-cohomology, Invent. Math. 71 (1983), 443-465.
MathSciNet
CrossRef
-
W. J. Sweet, Jr., A computation of the gamma matrix of a family of
p-adic zeta integrals, J. Number Theory 55 (1995), 222-260.
MathSciNet
CrossRef
-
M. Tadić, Induced representations of GL(n,A) for
p-adic division algebras A, J. Reine Angew. Math. 405 (1990),
48-77.
MathSciNet
CrossRef
-
M. Tadić, Structure arising
from induction and Jacquet modules of representations of classical
p-adic groups, J. Algebra 177 (1995), 1-33.
MathSciNet
CrossRef
-
M. Tadić, On reducibility of
parabolic induction, Israel J. Math. 107 (1998), 29-91.
MathSciNet
CrossRef
Glasnik Matematicki Home Page