Glasnik Matematicki, Vol. 50, No. 1 (2015), 245-259.
STRONG CONVERGENCE FOR m-PAIRWISE NEGATIVELY QUADRANT DEPENDENT RANDOM VARIABLES
Yongfeng Wu and Andrew Rosalsky
College of Mathematics and Computer Science, Tongling University, 244000 Tongling, China,
and,
Center for Financial Engineering and School of Mathematical Sciences, Soochow University, 215006 Suzhou, China
e-mail: wyfwyf@126.com
Department of Statistics, University of Florida, Gainesville, FL 32611, USA
e-mail: rosalsky@stat.ufl.edu
Abstract.
Complete convergence and the Marcinkiewicz-Zygmund strong law of large numbers for
sequences of m-pairwise negatively quadrant dependent (m-PNQD) random variables is studied in this paper.
The results obtained extend and improve the corresponding theorems of Choi and Sung ([4]) and Hu et al. ([9]). A version of the Kolmogorov
strong law of large numbers for sequences of m-PNQD random variables is also obtained.
2010 Mathematics Subject Classification.
60F15.
Key words and phrases. m-pairwise negatively quadrant dependent random variables, complete convergence, strong law of large numbers.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.1.15
References:
- A. Adler, A. Rosalsky and R. L. Taylor, Some strong laws of large numbers for sums of
random elements,
Bull. Inst. Math. Acad. Sinica 20 (1992), 335-357.
MathSciNet
- V. T. N. Anh, A strong limit theorem for sequences of blockwise and pairwise negative quadrant m-dependent random variables,
Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 159-164.
MathSciNet
- T. K. Chandra and A. Goswami, Cesàro uniform integrability and the strong law of large numbers,
Sankhya Ser. A 54 (1992), 215-231.
MathSciNet
- B. D. Choi and S. H. Sung, On convergence of (Sn-ESn)/n1/r, 1 < r < 2, for
pairwise independent random variables,
Bull. Korean Math. Soc. 22 (1985), 79-82.
MathSciNet
- W. Feller,
An introduction to probability theory and its applications.
Vol. II, 2nd ed., John Wiley, New York, 1971.
MathSciNet
- S. Gan and P. Chen,
Some limit theorems for sequences of
pairwise NQD random variables,
Acta Math. Sci. Ser. B Engl. Ed. 28 (2008), 269-281.
MathSciNet
CrossRef
- M. Y. Gerasimov,
The strong law of large numbers for pairwise negatively dependent
random variables,
Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet. 2009 (2009), 7-13 (in Russian). English translation in: Moscow Univ. Comput. Math. Cybernet. 33 (2009), 51-58.
MathSciNet
CrossRef
- P. L. Hsu and H. Robbins,
Complete convergence and the law of large numbers,
Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 25-31.
MathSciNet
CrossRef
- S. Hu, X. Liu, X. Wang and X. Li,
Strong law of large numbers of partial sums for pairwise
NQD sequences,
J. Math. Res. Appl. 33 (2013), 111-116.
MathSciNet
- T.-S. Kim and H.-C. Kim,
On the weak law of large numbers for weighted sums of pairwise negative quadrant dependent random variables,
Int. J. Math. Game Theory Algebra 10 (2000), 473-482.
MathSciNet
- T.-S. Kim and H.-C. Kim,
On the law of large numbers for weighted sums of pairwise negatively quadrant dependent random variables,
Bull. Korean Math. Soc. 38 (2001), 55-63.
MathSciNet
- E. L. Lehmann,
Some concepts of dependence,
Ann. Math. Statist. 37 (1966), 1137-1153.
MathSciNet
CrossRef
- D. Li, A. Rosalsky and A. I. Volodin,
On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables,
Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), 281-305.
MathSciNet
- R. Li and W. Yang,
Strong convergence of pairwise NQD random sequences,
J. Math. Anal. Appl. 344 (2008), 741-747.
MathSciNet
CrossRef
- A. Martikainen,
On the strong law of large numbers for sums of pairwise independent random variables,
Statist. Probab. Lett. 25 (1995), 21-26.
MathSciNet
CrossRef
- P. Matula,
A note on the almost sure convergence of sums of negatively dependent random variables,
Statist. Probab. Lett. 15 (1992), 209-213.
MathSciNet
CrossRef
- Y. Meng and Z. Lin,
On the weak laws of large numbers for arrays of random variables,
Statist. Probab. Lett. 79 (2009), 2405-2414.
MathSciNet
CrossRef
- M. Ordóñez Cabrera and A. Volodin,
Mean convergence theorems and weak laws of large
numbers for weighted sums of random variables under a condition of weighted integrability,
J. Math. Anal. Appl. 305 (2005), 644-658.
MathSciNet
CrossRef
- R. F. Patterson and R. L. Taylor,
Strong laws of large numbers for negatively dependent random elements,
Nonlinear Anal. 30 (1997), 4229-4235.
MathSciNet
CrossRef
- R. Pemantle,
Towards a theory of negative dependence,
J. Math. Phys. 41 (2000), 1371-1390.
MathSciNet
CrossRef
- Y. C. Qi,
Limit theorems for sums and maxima of pairwise negative quadrant dependent random variables,
Systems Sci. Math. Sci. 8 (1995), 249-253.
MathSciNet
- S. H. Sung,
Convergence in r-mean of weighted sums of NQD random variables,
Appl. Math. Lett. 26 (2013), 18-24.
MathSciNet
CrossRef
- S. H. Sung,
Marcinkiewicz-Zygmund type strong law of large numbers for pairwise i.i.d. random variables,
J. Theor. Probab. 27 (2014), 96-106.
MathSciNet
CrossRef
- R. L. Taylor,
Stochastic convergence of weighted sums of random elements in linear spaces, Springer-Verlag, Berlin, 1978.
MathSciNet
- R. L. Taylor, R. F. Patterson and A. Bozorgnia,
A strong law of large
numbers for arrays of rowwise negatively dependent random variables,
Stochastic Anal. Appl. 20 (2002), 643-656.
MathSciNet
CrossRef
- D. Wei and R. L. Taylor,
Convergence of weighted sums of tight random elements,
J. Multivariate Anal. 8 (1978), 282-294.
MathSciNet
CrossRef
- Q. Y. Wu,
Convergence properties of pairwise NQD random sequences,
Acta Math. Sinica (Chin. Ser.) 45 (2002), 617-624, in Chinese.
MathSciNet
- Q. Wu and Y. Jiang,
The strong law of large numbers for pairwise NQD random variables,
J. Syst. Sci. Complex. 24 (2011), 347-357.
MathSciNet
CrossRef
- Y. Wu and M. Guan,
Mean convergence theorems and weak laws of large numbers for
weighted sums of dependent random variables,
J. Math. Anal. Appl. 377 (2011), 613-623.
MathSciNet
CrossRef
- Y. Wu and D. Wang,
Convergence properties for arrays of rowwise pairwise negatively quadrant dependent
random variables,
Appl. Math. 57 (2012), 463-476.
MathSciNet
CrossRef
- G.-D. Xing,
On the almost sure convergence rates for pairwise negative quadrant dependent random variables,
Thai J. Math. 8 (2010), 171-184.
MathSciNet
Glasnik Matematicki Home Page