Glasnik Matematicki, Vol. 50, No. 1 (2015), 183-192.

SUMS OF ZEROS OF SOLUTIONS TO SECOND ORDER DIFFERENTIAL EQUATIONS WITH POLYNOMIAL COEFFICIENTS

Michael Gil'

Department of Mathematics , Ben Gurion University of the Negev, P.0. Box 653, Beer-Sheva 84105, Israel
e-mail: gilmi@bezeqint.net


Abstract.   We consider the equation u''=P(z)u, where P(z) is a polynomial. Let zk(u), k=1, 2, ... be the zeros of a solution u(z) to that equation. Inequalities for the sums k=1j |zk(u)|-1 (j=1, 2, ...) are derived. They considerably improve the previous result of the author. Some applications of the obtained bounds are also discussed. An illustrative example is presented. It shows that the suggested results are sharp.

2010 Mathematics Subject Classification.   34C10, 34A30.

Key words and phrases.   Linear differential equation in the complex plane, bounds for zeros of solutions.


Full text (PDF) (free access)

DOI: 10.3336/gm.50.1.10


References:

  1. N. Anghel, Stieltjes-Calogero-Gil' relations associated to entire functions of finite order, J. Math. Phys. 51 (2010), 053509, 9 pp.
    MathSciNet     CrossRef

  2. N. Anghel, Entire functions of finite order as solutions to certain complex linear differential equations, Proc. Amer. Math. Soc. 140 (2012), 2319-2332.
    MathSciNet     CrossRef

  3. S. Bank, A note on the location of complex zeros of solutions of linear differential equations, Complex Variables Theory Appl. 12 (1989), 159-167.
    MathSciNet     CrossRef

  4. B. Belaïdi and A. E. Farissi, Differential polynomials generated by some complex linear differential equations with meromorphic coefficients, Glas. Mat. Ser. III 43(63) (2008), 363-373.
    MathSciNet     CrossRef

  5. F. Brüggemann, On the zeros of fundamental systems of linear differential equations with polynomial coefficients, Complex Variables Theory Appl. 15 (1990), 159-166.
    MathSciNet     CrossRef

  6. T.-B. Cao, K. Liu and H.-Y. Xu, Bounds for the sums of zeros of solutions of u(m) = P(z)u where P is a polynomial, Electron. J. Qual. Theory Differ. Equ. 2011 (2011), no. 60, 10 pp.
    MathSciNet    

  7. Yu L. Daleckii and M. G. Krein, Stability of solutions of differential equations in Banach space, Amer. Math. Soc., Providence, R. I. 1974.
    MathSciNet    

  8. P. W. Eloe and J. Henderson, Positive solutions for higher order ordinary differential equations, Electron. J. Differential Equations 1995 (1995), no. 03, 8 pp.
    MathSciNet    

  9. A. Eremenko and S. Merenkov. Nevanlinna functions with real zeros, Illinois J. Math. 49 (2005), 1093-1110 (electronic).
    MathSciNet     CrossRef

  10. A. E. Farissi and B. Belaïdi, On oscillation theorems for differential polynomials, Electron. J. Qual. Theory Differ. Equ. 22 (2009), No. 22, 10 pp.
    MathSciNet    

  11. M. Gaudenzi, On the number of the zeros of solutions of a linear differential equation, J. Math. Anal. Appl. 221 (1998), 306-325.
    MathSciNet     CrossRef

  12. M. I. Gil', Inequalities for zeros of entire functions, J. Inequal. Appl. 6 (2001), 463-471.
    MathSciNet     CrossRef

  13. M. I. Gil', Localization and perturbation of zeros of entire functions, CRC Press, Boca Raton, 2010.
    MathSciNet    

  14. M. I. Gil', Bounds for zeros of solutions of second order differential equations with polynomial coefficients, Results Math. 59 (2011), 115-124.
    MathSciNet     CrossRef

  15. M. I. Gil', Perturbation of zeros of solutions to second order differential equations with polynomial coefficients, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), 1083-1092.
    MathSciNet     CrossRef

  16. M. I. Gil', Sums of zeros of solutions to second order ODE with non-polynomial coefficients, Electron. J. Differential Equations 2012 (2012), no. 107, 8 pp.
    MathSciNet    

  17. G. G. Gundersen, On the real zeros of solutions of f"+A(z)f=0 where A(z) is entire, Ann. Acad. Sci. Fenn. Ser. A I Math. 11 (1986), 275-294
    MathSciNet     CrossRef

  18. S. Hellerstein and J. Rossi, On the distribution of zeros of solutions of second-order differential equations, Complex Variables Theory Appl. 13 (1989), 99-109.
    MathSciNet     CrossRef

  19. H. Herold, Ein Vergleichssatz für komplexe lineare Differentialgleichungen, Math. Z. 126 (1972), 91-94.
    MathSciNet     CrossRef

  20. E. Hille, Lectures on ordinary differential equations, Addison Wesley Publ. Co., Ontario, 1969.
    MathSciNet    

  21. C. Z. Huang, Real zeros of solutions of second order linear differential equations, Kodai Math. J. 14 (1991), 113-122.
    MathSciNet     CrossRef

  22. I. Laine, Nevanlinna theory and complex differential equations, Walter de Gruyter Berlin, 1993.
    MathSciNet     CrossRef

  23. C.-H. Lin, Y. Sibuya and T. Tabara, Zeros of solutions of a second order linear differential equation with polynomial coefficients, Funkcial. Ekvac. 36 (1993), 375-384.
    MathSciNet     CrossRef

  24. G. M. Muminov, On the zeros of solutions of the differential equation ω(2m)+p(z)ω=0, Demonstratio Math. 35 (2002), 41-48.
    MathSciNet    

  25. G. Polya and G. Szegö, Problems and theorems in analysis. Vol. II, Springer-Verlag, New York, 1976.
    MathSciNet     CrossRef

  26. J. Tu and Z. X. Chen, Zeros of solutions of certain second order linear differential equation, J. Math. Anal. Appl. 332 (2007), 279-291.
    MathSciNet     CrossRef

  27. J. F. Xu and H. X. Yi, Solutions of higher order linear differential equations in an angle, Appl. Math. Lett. 22 (2009), 484-489.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page