Glasnik Matematicki, Vol. 50, No. 1 (2015), 65-76.
RATIONAL FUNCTION VARIANT OF A PROBLEM OF ERDÖS AND GRAHAM
Szabolcs Tengely and Nóra Varga
Mathematical Institute,
University of Derecen,
P.O.Box 12, 4010 Debrecen,
Hungary
e-mail: tengely@science.unideb.hu
Institute of Mathematics, MTA-DE Research Group "Equations, Functions and Curves",
Hungarian Academy of Sciences and University of Debrecen,
P. O. Box 12, H-4010 Debrecen,
Hungary
e-mail: nvarga@science.unideb.hu
Abstract.
In this paper we provide bounds for the size of the solutions of the Diophantine equations
where a,b,c,dZ are pairwise distinct integers.
2010 Mathematics Subject Classification.
11D61, 11Y50.
Key words and phrases. Diophantine equations.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.1.06
References:
-
M. Bauer and M. A. Bennett, Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation, Ramanujan J. 6 (2002), 209-270.
MathSciNet
CrossRef
- M. A. Bennett, N. Bruin, K. Györy, and L. Hajdu, Powers from products of consecutive terms in arithmetic progression, Proc. London Math. Soc. 92 (2006), 273-306.
MathSciNet
CrossRef
-
M. A. Bennett and R. Van Luijk, Squares from blocks of consecutive integers: a problem of Erdös and Graham, Indag. Math., New Ser. 23 (2012), 123-127.
MathSciNet
CrossRef
-
L.E. Dickson, History of the theory of numbers. Vol II: Diophantine
analysis, Chelsea Publishing Co., New York, 1966.
MathSciNet
-
P. Erdös, Note on the product of consecutive integers (II), J. London Math. Soc. 14 (1939), 245-249.
MathSciNet
CrossRef
-
P. Erdös and R. L. Graham, Old and new problems and results in combinatorial number
theory, Monographies de L'Enseignement Mathématique, Geneva, 1980.
MathSciNet
-
P. Erdös and J. L. Selfridge The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301.
MathSciNet
CrossRef
-
M. Fujiwara, Über die obere Schranke des absoluten Betrages der Wurzeln einer
algebraischen Gleichung, Tôhoku Math. J. 10 (1916), 167-171.
-
K. Györy, On the diophantine equation n(n+1) ... (n+k-1)=bxl ,
Acta Arith. 83 (1998), 87-92.
MathSciNet
-
K. Györy, L. Hajdu, and Á. Pintér, Perfect powers from products of consecutive terms in arithmetic progression, Compos. Math. 145 (2009), 845-864.
MathSciNet
CrossRef
-
K. Györy, L. Hajdu, and N. Saradha, On the Diophantine equation n(n+d)...(n+(k-1)d)=byl, Canad. Math. Bull. 47 (2004), 373-388.
MathSciNet
CrossRef
-
L. Hajdu, Sz. Tengely, and R. Tijdeman, Cubes in products of terms in arithmetic progression, Publ. Math. Debrecen 74 (2009), 215-232.
MathSciNet
-
N. Hirata-Kohno, S. Laishram, T. N. Shorey, and R. Tijdeman, An extension of a theorem of Euler, Acta Arith. 129 (2007), 71-102.
MathSciNet
CrossRef
-
S. Laishram and T. N. Shorey, The equation n(n+d)...(n+(k-1)d)=by2 with ω(d)≤ 6
or d≤ 1010, Acta Arith. 129 (2007), 249-305.
MathSciNet
CrossRef
-
F. Luca and P.G. Walsh, On a diophantine equation related to a conjecture of Erdös and Graham, Glas. Mat. Ser. III 42 (2007), 281-289.
MathSciNet
CrossRef
-
R. Obláth, Über das Produkt fünf aufeinander folgender Zahlen in einer
arithmetischen Reihe, Publ. Math. Debrecen 1 (1950), 222-226.
MathSciNet
-
O. Rigge, Über ein diophantisches problem, in: 9th Congress Math. Scand., Helsingfors 1938., 155-160.
-
A. Sankaranarayanan and N. Saradha, Estimates for the solutions of certain Diophantine equations by Runge's method,
Int. J. Number Theory 4 (2008), 475-493.
MathSciNet
CrossRef
-
N. Saradha, On perfect powers in products with terms from arithmetic
progressions, Acta Arith. 82 (1997), 147-172.
MathSciNet
-
N. Saradha and T. N. Shorey, Almost squares in arithmetic progression, Compositio Math. 138 (2003), 73-111.
MathSciNet
CrossRef
-
M. Skałba, Products of disjoint blocks of consecutive integers which are
powers, Colloq. Math. 98 (2003), 1-3.
MathSciNet
CrossRef
-
W. A. Stein et al., Sage Mathematics Software (Version 6.0),
The Sage Development Team, 2014, http://www.sagemath.org.
-
Sz. Tengely, Note on the paper: "An extension of a theorem of Euler" [Acta
Arith. 129 (2007), 71-102; MR2326488] by N. Hirata-Kohno,
S. Laishram, T. N. Shorey and R. Tijdeman.
Acta Arith. 134 (2008), 329-335.
MathSciNet
CrossRef
-
Sz. Tengely and N. Varga, On a generalization of a problem of Erdös and Graham, Publ. Math. Debrecen 84 (2014), 475-482.
CrossRef
-
M. Ulas, On products of disjoint blocks of consecutive integers,
Enseign. Math. (2) 51 (2005), 331-334.
MathSciNet
Glasnik Matematicki Home Page