Glasnik Matematicki, Vol. 50, No. 1 (2015), 35-41.
A GENERALIZATION OF A PROBLEM OF MORDELL
Bo He, Ákos Pintér, Alain Togbé and Nóra Varga
Institute of Mathematics,
Aba Normal University,
Wenchuan, Sichuan 623000,
P. R. China
e-mail: bhe@live.cn
Institute of Mathematics, MTA-DE Research Group "Equations, Functions and Curves",
Hungarian Academy of Sciences and University of Debrecen,
P. O. Box 12, H-4010 Debrecen,
Hungary
e-mail: apinter@science.unideb.hu
Department of Mathematics,
Purdue University North Central, 1401 S. U.S. 421,
Westville, IN 46391,
USA
e-mail: atogbe@pnc.edu
Institute of Mathematics, MTA-DE Research Group "Equations, Functions and Curves",
Hungarian Academy of Sciences and University of Debrecen,
P. O. Box 12, H-4010 Debrecen,
Hungary
e-mail: nvarga@science.unideb.hu
Abstract.
In this paper, we use polygonal and pyramidal numbers Polxm and Pyrxm to extend a problem of Mordell. Then we prove that if m≥ 3,n≥ 3 with (m,n)≠ (50,3), (50,6), all the solutions x and y to the related equation verify max(x,y)< C, where C is an effectively computable constant depending only on m and n.
2010 Mathematics Subject Classification.
11D41, 11J86, 11B39, 11D61.
Key words and phrases. Diophantine equation, binomial coefficients, polygonal numbers, pyramidal numbers.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.1.04
References:
- A. Baker, Bounds for the solutions of the hyperelliptic equation, Math. Proc. Cambridge Philos. Soc. 65 (1969), 439-444.
MathSciNet
CrossRef
- W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
MathSciNet
CrossRef
- A. Bremner, An equation of Mordell, Math. Comp. 29 (1975), 925-928.
MathSciNet
CrossRef
- B. Brindza, On S-integral solutions of the equation ym = f(x), Acta Math. Hungar. 44 (1984), 133-139.
MathSciNet
CrossRef
- B. Brindza, Á. Pintér and S. Turjányi, On equal values of pyramidal and polygonal numbers, Indag. Math. (N.S.) 9 (1998), 183-185.
MathSciNet
CrossRef
- Y. Bugeaud, Bounds for the solutions of superelliptic equations, Compos. Math. 107 (1997), 187-219.
MathSciNet
CrossRef
- J. Cremona and D. Rusin, Efficient solution of rational conics, Math. Comp. 72 (2003), 1417-1441.
MathSciNet
CrossRef
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
MathSciNet
- L. E. Dickson, History of the theory of numbers. Vol. II: Diophantine analysis, Chelsea Publishing Co., New York, 1966.
MathSciNet
- M. Kaneko and K. Tachibana, When is a polygonal pyramid number again polygonal? Rocky Mountain J. Math., 32 (2002), 149-165.
MathSciNet
CrossRef
- L. Hajdu, Á. Pintér, Sz. Tengely and N. Varga, Equal values of figurate numbers, J. Number Theory, 137 (2014), 130-141.
MathSciNet
CrossRef
- W. Ljunggren, A diophantine problem, J. London Math. Soc. (2), 3 (1971), 385-391.
MathSciNet
CrossRef
- L. J. Mordell, Diophantine equations, Pure and Applied Mathematics 30, Academic Press, London-New York, 1969.
MathSciNet
- The PARI Group. PARI/GP version 2.7.0, 2014. Bordeaux, available from http://pari.math.u-bordeaux.fr.
- Á. Pintér and N. Varga, Resolution of a nontrivial Diophantine equation without reduction methods, Publ. Math. Debrecen 79 (2011), 605-610.
MathSciNet
CrossRef
Glasnik Matematicki Home Page