Glasnik Matematicki, Vol. 50, No. 1 (2015), 25-34.
BOUNDS FOR DIOPHANTINE QUINTUPLES
Mihai Cipu and Yasutsugu Fujita
Simion Stoilow Institute of Mathematics of the
Romanian Academy,
Research unit nr. 5,
P.O. Box 1-764, RO-014700 Bucharest,
Romania
e-mail: Mihai.Cipu@imar.ro
Department of Mathematics,
College of Industrial
Technology,
Nihon University,
2-11-1 Shin-ei, Narashino,
Chiba,
Japan
e-mail: fujita.yasutsugu@nihon-u.ac.jp
Abstract.
A set of m positive integers {a1,...,am} is called a
Diophantine m-tuple if the product of any two elements in the
set increased by one is a perfect square. The conjecture
according to which there does not exist a Diophantine quintuple
is still open. In this paper, we show that if {a,b,c,d,e}
is a Diophantine quintuple with a < b < c < d < e , then b >3a;
moreover, b > max{21 a, 2 a3/2} in case c>a+b+2(ab+1)1/2.
2010 Mathematics Subject Classification.
11D09, 11B37, 11J68.
Key words and phrases. Diophantine m-tuples, Pell equations, hypergeometric method.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.1.03
References:
- J. Arkin, V. E. Hoggatt and E. G. Strauss, On Euler's
solution of a problem of Diophantus, Fibonacci Quart.
17 (1979), 333-339.
MathSciNet
- A. Baker and H. Davenport, The equations
3x2-2=y2 and 8x2-7=z2, Quart. J. Math. Oxford Ser. (2)
20 (1969), 129-137.
MathSciNet
CrossRef
- M. A. Bennett, Simultaneous approximation to pairs
of algebraic numbers, in: CMS Conf. Proc. 15 (1995), 55-65.
MathSciNet
- M. A. Bennett, Simultaneous rational approximation
to binomial functions, Trans. Amer. Math. Soc. 348
(1996), 1717-1738.
MathSciNet
CrossRef
- M. A. Bennett, On the number of solutions of
simultaneous Pell equations, J. Reine Angew. Math.
498 (1998), 173-199.
MathSciNet
CrossRef
- M. Cipu, Further remarks on Diophantine quintuples,
Acta Arith. 168 (2015), 201-219.
- A. Dujella, An absolute bound for the size of
Diophantine m-tuples, J. Number Theory 89
(2001), 126-150.
MathSciNet
CrossRef
- A. Dujella, There are only finitely many Diophantine
quintuples, J. Reine Angew. Math. 566 (2004),
183-214.
MathSciNet
CrossRef
- A. Dujella, On the number of Diophantine m-tuples,
Ramanujan J. Math. 15 (2008), 37-46.
MathSciNet
CrossRef
- A. Dujella and A. Pethő, A generalization of a
theorem of Baker and Davenport, Q. J. Math. 49 (1998), 291-306.
MathSciNet
CrossRef
- C. Elsholtz, A. Filipin and Y. Fujita, On
Diophantine quintuples and D(-1)-quadruples, Monatsh.
Math. 175 (2014) 227-239.
MathSciNet
CrossRef
- A. Filipin and Y. Fujita, The number of Diophantine
quintuples II, Publ. Math. Debrecen 82 (2013),
293-308.
MathSciNet
CrossRef
- A. Filipin, Y. Fujita, and A. Togbé, The
extendibility of Diophantine pairs I: the general case, Glas. Mat. Ser. III 49 (2014), 25-36.
MathSciNet
CrossRef
- Y. Fujita, The extensibility of Diophantine pairs
{k-1,k+1}, J. Number Theory 128 (2008),
322-353.
MathSciNet
CrossRef
- Y. Fujita, Any Diophantine quintuple contains
a regular Diophantine quadruple, J. Number Theory
129 (2009), 1678-1697.
MathSciNet
CrossRef
- Y. Fujita, The number of Diophantine
quintuples, Glas. Mat. Ser. III 45(65) (2010),
15-29.
MathSciNet
CrossRef
- P. E. Gibbs, Computer Bulletin 17
(1978), 16.
- P. E. Gibbs, Some rational Diophantine sextuples,
Glas. Mat. Ser. III 41 (2006), 195-203.
MathSciNet
CrossRef
- B. W. Jones, A second variation on a problem
of Diophantus and Davenport, Fibonacci Quart.
16 (1978), 155-165.
MathSciNet
- The PARI Group, PARI/GP, version 2.3.5,
Bordeaux, 2010, available from http://pari.math.u-bordeaux.fr/.
- J. H. Rickert, Simultaneous rational approximations
and related Diophantine equations, Math. Proc. Cambridge Philos. Soc.
113 (1993), 461-472.
MathSciNet
CrossRef
- L. Schoenfeld, Sharper bounds for the Chebyshev
functions θ(x) and ψ(x) II, Math. Comp.
30 (1976), 337-360.
MathSciNet
CrossRef
- W. Wu and B. He, On Diophantine quintuple conjecture,
Proc. Japan Acad. Ser. A Math. Sci. 90 (2014),
84-86.
MathSciNet
CrossRef
Glasnik Matematicki Home Page