Glasnik Matematicki, Vol. 50, No. 1 (2015), 17-24.
TRIBONACCI DIOPHANTINE QUADRUPLES
Carlos Alexis Gómez Ruiz and Florian Luca
Departamento de Matemáticas, Universidad del Valle, 25360 Cali, Calle 13 No 100-00, Colombia
e-mail: carlos.a.gomez@correounivalle.edu.co
School of Mathematics,
University of the Witwatersrand,
P. O. Box Wits,
South Africa
e-mail: florian.luca@wits.ac.za
Abstract.
In this paper, we show that there does not exist a quadruple of positive integers a1 < a2 < a3 < a4 such
that aiaj + 1 (i≠ j) are all members of the Tribonacci sequence (Tn)n≥ 0.
2010 Mathematics Subject Classification.
11B37, 11B39, 11D61.
Key words and phrases. Quadruples Diophantine, Tribonacci numbers.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.1.02
References:
- Y. Bugeaud and A. Dujella, On a problem of Diophantus for higher powers, Math. Proc. Cambridge Philos. Soc. 135 (2003), 1-10.
MathSciNet
CrossRef
- Y. Bugeaud and K. Gyarmati, On generalizations of a problem of Diophantus, Illinois J. Math. 48 (2004), 1105-1115.
MathSciNet
CrossRef
- J. Bravo and F. Luca, Powers of two in generalized Fibonacci sequences,
Rev. Colombiana Mat. 46 (2012), 67-79.
MathSciNet
- G. P. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Sequences 17 (2014), Article 14.4.7.
MathSciNet
- A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
MathSciNet
CrossRef
- C. Fuchs, F. Luca and L. Szalay, Diophantine triples with values in binary recurrences,
Ann. Sc. Norm. Super. Pisa Cl. Sc. (5), 7 (2008), 579-608.
MathSciNet
- P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. Ser. III 41(61) (2006), 195-203.
MathSciNet
CrossRef
- K. Gyarmati, A. Sarkozy and C. L. Stewart, On shifted products which are powers, Mathematika 49 (2002), 227-230.
MathSciNet
CrossRef
- K. Gyarmati and C. L. Stewart, On powers in shifted products, Glas. Mat. Ser. III 42(62) (2007), 273-279.
MathSciNet
CrossRef
- F. Luca, On shifted products which are powers, Glas. Mat. Ser. III 40(60) (2005), 13-20.
MathSciNet
CrossRef
- F. Luca and l. Szalay, Fibonacci Diophantine triples, Glas. Mat. Ser. III 43(63) (2008), 253-264.
MathSciNet
CrossRef
- F. Luca and l. Szalay, Lucas Diophantine triples, Integers 9 (2009), 441-457.
MathSciNet
CrossRef
Glasnik Matematicki Home Page