Glasnik Matematicki, Vol. 49, No. 2 (2014), 433-446.
DISCRETE REFLEXIVITY IN GO SPACES
Vladimir V. Tkachuk and Richard G. Wilson
Departamento de Matemáticas,
Universidad Autónoma Metropolitana,
Av. San Rafael Atlixco, 186, Col. Vicentina, Iztapalapa,
C.P. 09340, Mexico D.F.,
Mexico
e-mail: vova@xanum.uam.mx
e-mail: rgw@xanum.uam.mx
Abstract.
A property P is discretely reflexive if a space X
has P whenever Cl D has P for any discrete
set D ⊂ X. We prove that quite a few topological
properties are discretely reflexive in GO spaces. In particular,
if X is a GO space and Cl D is first countable (paracompact,
Lindelöf, sequential or Fréchet-Urysohn) for any discrete D ⊂ X then X
is first countable (paracompact, Lindelöf, sequential or Fréchet-Urysoh
respectively). We show that a space with a nested local base at
every point is discretely locally compact if and only if it is
locally compact. Therefore local compactness is discretely
reflexive in GO spaces. It is shown that a GO space is scattered
if and only if it is discretely scattered. Under CH we show that
Čech-completeness is not discretely reflexive even in second
countable linearly ordered spaces. However, discrete Čech-completeness of X × X is equivalent to its Čech-completeness if X is a LOTS. We also establish that any
discretely Čech-complete Borel set must be Čech-complete.
2010 Mathematics Subject Classification.
54D45, 54F05, 54G12.
Key words and phrases. Discretely reflexive property, discretely
Lindelöf space, GO space, discretely locally compact space,
discretely Čech-complete space, d-separable space,
discretely scattered space, linearly ordered space.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.2.15
References:
-
O. Alas, V.V. Tkachuk, R.G. Wilson, Closures of discrete
sets often reflect global properties, Topology Proc. 25 (2000), 27-44.
MathSciNet
-
A. V. Arhangel'skii, Structure and classification of
topological spaces and cardinal invariants, (in Russian), Uspehi
Mat. Nauk 33 (1978), 29-84.
MathSciNet
-
A. V. Arhangel'skii, A generic
theorem in the theory of cardinal invariants of topological
spaces, Comment. Math. Univ. Carolin. 36 (1995),
303-325.
MathSciNet
-
A. V. Arhangel'skii and R. Z. Buzyakova, On linearly Lindelöf
and strongly discretely Lindelöf spaces, Proc. Amer. Math.
Soc. 127 (1999), 2449-2458.
MathSciNet
CrossRef
- Z. Balogh and M. E. Rudin, Monotone normality,
Topology Appl. 47 (1992), 115-127.
MathSciNet
CrossRef
-
D. Burke and V. V. Tkachuk, Diagonals and discrete subsets of
squares, Comment. Math. Univ. Carolin. 54 (2013), 69-82.
MathSciNet
-
D. Burke and V. V. Tkachuk, Discrete reflexivity and complements
of the diagonal, Acta Math. Hungar. 139 (2013),
120-133.
MathSciNet
CrossRef
- E. K. van Douwen, Remote points, Dissertationes Math. (Rozprawy Mat.)
188 (1981), 45 pp.
MathSciNet
- E. K. van Douwen, The integers and topology,
in: Handbook of Set-Theoretic Topology, ed. by K. Kunen and J.E.
Vaughan, Elsevier S.P., Amsterdam, 1984, 111-167.
MathSciNet
- E. K. van Douwen, Applications of maximal
topologies, Topology Appl. 51 (1993),
125-139.
MathSciNet
CrossRef
- E. K. van Douwen, Closed copies of the
rationals, Comment. Math. Univ. Carolin. 28 (1987),
137-139.
MathSciNet
- A. Dow, M. G. Tkachenko, V. V. Tkachuk and
R. G. Wilson, Topologies generated by discrete subspaces,
Glas. Mat. Ser. III 37(57) (2002), 189-212.
MathSciNet
-
R. Engelking, General topology, PWN,
Warszawa, 1977.
MathSciNet
-
G. Gruenhage, Generalized metric spaces, in: Handbook of
set-theoretic topology, North Holland, New York, 1984,
423-501.
MathSciNet
- W. Hurewicz, Relativ perfekte Teile von
Punktmengen und Mengen (A), Fund. Math. 12 (1928),
78-109.
- I. Juhász and Z. Szentmiklossy, On d-separability of powers and Cp(X), Topology
Appl. 155 (2008), 277-281.
MathSciNet
CrossRef
-
B. Knaster and K. Urbanik, Sur les
espaces complets séparables de dimension 0, Fund. Math.
40 (1953), 194-202.
MathSciNet
-
V. V. Tkachuk, Spaces that are projective with respect to
classes of mappings, Trans. Moscow Math. Soc. 50 (1988), 139-156.
MathSciNet
-
V. V. Tkachuk, A Cp-theory problem book. Topological and
function spaces, Springer, New York, 2011.
MathSciNet
CrossRef
-
S. Todorčević, Trees and linearly ordered sets, in:
Handbook of set-theoretic topology, North Holland, New York,
1984, 235-293.
MathSciNet
-
R. C. Walker, The Stone-Čech compatification, Springer-Verlag,
New York, 1974.
MathSciNet
CrossRef
Glasnik Matematicki Home Page