Glasnik Matematicki, Vol. 49, No. 2 (2014), 421-432.
UNIQUENESS OF HYPERSPACES OF INDECOMPOSABLE ARC CONTINUA
Rodrigo Hernández-Gutiérrez, Alejandro Illanes and Verónica Martínez-de-la-Vega
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, A.P. 61-3, Xangari, Morelia, Michoacán, 58089,
México
e-mail: rod@matmor.unam.mx
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria,
México, 04510, D.F.
e-mail: illanes@matem.unam.mx
Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria,
México, 04510, D.F.
e-mail: vmvm@matem.unam.mx
Abstract.
Given a metric continuum X, we consider the hyperspace Cn(X) of all
nonempty closed subsets of X with at most n components. In this paper we
prove that if n≠ 2, X is an indecomposable continuum such that all
its proper nondegenerate subcontinua are arcs and Y is a continuum such
that Cn(X) is homeomorphic to Cn(Y), then X is homeomorphic to Y (that is, X has unique hyperspace Cn(X)).
2010 Mathematics Subject Classification.
54B20, 54F15.
Key words and phrases. Continuum, hyperspace, indecomposability, rigidity, unique hyperspace, wire.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.2.14
References:
- G. Acosta, Continua with almost unique hyperspace,
Topology Appl. 117 (2002), 175-189.
MathSciNet
CrossRef
- J. G. Anaya, Making holes in hyperspaces, Topology
Appl. 154 (2007), 2000-2008.
MathSciNet
CrossRef
- J. G. Anaya, E. Castañeda-Alvarado and A. Illanes,
Continua with unique symmetric products, Comment. Math. Univ.
Carolin. 54 (2013), 397-406.
MathSciNet
- K. Borsuk and S. Ulam, On symmetric product of
topological spaces, Bull. Amer. Math. Soc. 37 (1931),
875-882.
MathSciNet
CrossRef
- D. Herrera-Carrasco, F. Macías-Romero, A. Illanes and F.
Vázquez-Juárez, Finite graphs have unique hyperspace HSn (X), Topology Proc. 44 (2014), 75-95.
MathSciNet
- J. J. Charatonik and A. Illanes, Local connectedness
in hyperspaces, Rocky Mountain J. Math. 36 (2006), 811-856.
MathSciNet
CrossRef
- R. Hernández-Gutiérrez, A. Illanes and V. Martínez-de-la-Vega, Uniqueness of hyperspaces for Peano continua, Rocky Mountain J. Math. 43 (2013), 1583-1624.
MathSciNet
CrossRef
- R. Hernández-Gutiérrez and V. Martínez-de-la-Vega, Rigidity of symmetric products, Topology Appl. 160 (2013), 1577-1587.
MathSciNet
CrossRef
- R. Hernández-Gutiérrez, A. Illanes and V. Martínez-de-la-Vega, Rigidity of hyperspaces, to appear in Rocky
Mountain J. Math.
- W. Hurewicz and H. Wallman, Dimension theory,
Princeton University Press, Princeton, 9th printing, 1974.
MathSciNet
- A. Illanes, Hyperspaces with exactly two or three
orbits, Aportaciones Mat. Investig. 19 (2007), 45-58.
MathSciNet
- A. Illanes, Hereditarily indecomposable Hausdorff
continua have unique hyperspaces 2X and Cn(X), Publ.
Inst. Math. (Beograd) (N.S.) 89(103) (2011), 49-56.
MathSciNet
CrossRef
- A. Illanes, Uniqueness of hyperspaces, Questions
Answers Gen. Topology 30 (2012), 21-44.
MathSciNet
- A. Illanes and S. B. Nadler, Jr., Hyperspaces.
Fundamentals and recent advances, Marcel Dekker, Inc., New York and Basel, 1999.
MathSciNet
- S. Macías, On C-determined continua, Glas.
Mat. Ser. III 32(52) (1997), 259-262.
MathSciNet
- S. Macías, On the hyperspaces Cn(X) of a continuum X, II, Topology Proc. 25 (2000), 255-276.
MathSciNet
- S. B. Nadler, Jr., Hyperspaces of sets. A text with
research questions, Marcel Dekker, Inc., New York and Basel, 1978.
MathSciNet
- S. B. Nadler, Jr., Continuum theory. An introduction,
Marcel Dekker, Inc., New York, Basel and Hong Kong, 1992.
MathSciNet
- S. B. Nadler, Jr., The fixed point property for
continua, Sociedad Matemática
Mexicana, México, 2005.
MathSciNet
Glasnik Matematicki Home Page