Glasnik Matematicki, Vol. 49, No. 2 (2014), 395-406.
INTEGRABLE SOLUTIONS OF A NONLINEAR INTEGRAL EQUATION RELATED TO SOME
EPIDEMIC MODELS
Azzeddine Bellour, Mahmoud Bousselsal and Mohamed-Aziz Taoudi
Department of Mathematics, Ecole Normale Superieure de
Constantine, Constantine, Algeria
, 25000, Constantine-Algeria
e-mail: bellourazze123@yahoo.com
Department of Mathematics, Laboratoire d'EDP non linéaires, Ecole Normale Superieure, Vieux Kouba, 16050,
Algiers-Algeria
e-mail: Bousselsal55@gmail.com
Université Cadi Ayyad, Centre Universitaire Kalaa des Sraghnas, Kalaa des Sraghnas, Morocco
e-mail: mataoudi@gmail.com
Abstract.
In this paper, we discuss the existence of integrable
solutions for a nonlinear integral equation related to some
epidemic models. The analysis uses the techniques of measures of
noncompactness and relies on an improved version of the
Krasnosel'skii fixed point theorem.
2010 Mathematics Subject Classification.
45D05, 45G10, 47H30.
Key words and phrases. Integral equations, measure of weak noncompactness,
fixed point theorem, integrable solutions.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.2.12
References:
- A. Abdeldaim, On some new Gronwall-Bellman-Ou-Iang type integral inequalities to study certain epidemic models,
J. Integral Equations Appl. 24 (2012), 149-166.
MathSciNet
CrossRef
-
R. P. Agarwal, D. O'Regan and M.-A. Taoudi, Fixed point
theorems for ws-compact mappings in Banach spaces, Fixed Point
Theory Appl. 2010, Art. ID 183596, 13 pp.
MathSciNet
- J. Appell and E. De Pascale, Su alcuni parametri connessi con la
misura di non compattezza di Hausdorff in spazi di funzioni
misurabili, Boll. Un. Mat. Ital. B (6) 3 (1984), 497-515.
MathSciNet
- J. Appell and P. P. Zabrejko,
Nonlinear superposition operators, Cambridge University Press, 1990.
MathSciNet
CrossRef
- N. T. J. Bailey, The mathematical theory of infectious diseases and its applications, Hafner Press, New York, 1975.
MathSciNet
- J. Banas and J. Rivero,
On measures of weak noncompactness, Ann. Mat. Pura Appl. (4)
151 (1988), 213-224.
MathSciNet
CrossRef
- H. Brezis, Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983.
MathSciNet
- F. S. De Blasi, On a property of the unit sphere in Banach spaces,
Bull. Math. Soc. Sci. Math. Roumanie 21 (1977), 259-262.
- O. Diekmann, Run for your life, A note on
the asymptotic speed of propagation of an epidemic, J. Differential Equations 33 (1979), 58-73.
MathSciNet
CrossRef
-
S. Djebali and Z. Sahnoun, Nonlinear alternatives of Schauder
and Krasnosel'skij types with applications to Hammerstein integral
equations in L1 spaces, J. Differential Equations 249
(2010), 2061-2075.
MathSciNet
CrossRef
- J. Dieudonné,
Sur les espaces de Köthe, J. Analyse Math. 1 (1951), 81-115.
MathSciNet
CrossRef
-
J. García-Falset, Existence of fixed points and measure of
weak noncompactness,
Nonlinear Anal. 71 (2009), 2625-2633.
MathSciNet
CrossRef
-
J. Garcia-Falset, K. Latrach, E. Moreno-Gálvez and M.-A. Taoudi,
Schaefer-Krasnoselskii fixed point theorems using a usual
measure of weak noncompactness, J. Differential Equations 252 (2012),
3436-3452.
MathSciNet
CrossRef
- G. Gripenberg, Periodic solutions of an epidemic model, J. Math. Biol. 10 (1980), 271-280.
MathSciNet
CrossRef
- G. Gripenberg, On some epidemic models, Quart. Appl. Math. 39 (1981/82), 317-327.
MathSciNet
-
J. Jachymski, On Isac's fixed point theorem for selfmaps of
a Galerkin cone, Ann. Sci. Math. Québec 18 (1994), 169-171.
MathSciNet
- K. Latrach and M.-A. Taoudi, Existence results for a generalized nonlinear Hammerstein equation
on L1-spaces, Nonlinear Anal. 66 (2007), 2325-2333.
MathSciNet
CrossRef
- K. Latrach, M.-A. Taoudi and A. Zeghal, Some fixed point theorems of the Schauder and Krasnosel'skii
type and application to nonlinear transport equations, J.
Differential Equations 221 (2006), 256-271.
MathSciNet
CrossRef
- L. Li, F. Meng and P. Ju, Some new integral inequalities and their applications in studying the
stability of nonlinear integro-differential equations with time
delay, J. Math. Anal. Appl. 377 (2011), 853-862.
MathSciNet
CrossRef
- Y. C. Liu and Z. X. Li, Schaefer type theorem and periodic solutions of evolution equations, J. Math. Anal. Appl. 316 (2006), 237-255.
MathSciNet
CrossRef
- M. A. Taoudi,
Integrable solutions of a nonlinear functional integral
equation on an unbounded interval, Nonlinear Anal. 71 (2009),
4131-4136.
MathSciNet
CrossRef
- I. M. Olaru, Generalization of an integral equation related to some
epidemic models, Carpathian J. Math. 26 (2010), 92-96.
MathSciNet
- B. G. Pachpatte, On a new inequality suggested by the study of certain epidemic models, J. Math. Anal. Appl. 195 (1995), 638-644.
MathSciNet
CrossRef
- G. Scorza Dragoni,
Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un'altra variabile, R Rend. Sem. Mat. Univ. Padova
17 (1948), 102-106.
MathSciNet
CrossRef
- P. Waltman, Deterministic threshold models in the theory of epidemics, Springer-Verlag, New York, 1974.
MathSciNet
Glasnik Matematicki Home Page