Glasnik Matematicki, Vol. 49, No. 2 (2014), 377-394.
ON TRANSLATION INVARIANT MULTIRESOLUTION ANALYSIS
Angel San Antolín
Departamento de Análisis Matemático, Universidad de Alicante, 03080 Alicante, Spain
e-mail: angel.sanantolin@ua.es
Abstract.
We give a characterization of the scaling functions and low pass filters in a
translation invariant multiresolution analysis on L2(ℝ n).
Our conditions involve the notion of locally non-zero function. We write our results in a
general context where one considers a dilation given by a fixed
expansive linear map on ℝ n preserving the integer lattice
ℤ n. Indeed, for any such a linear map we construct a scaling
function where the support of the Fourier transform is bounded and
does not contain any open neighborhood of the origin.
2010 Mathematics Subject Classification.
42C40, 42C30, 51M15.
Key words and phrases. Fourier transform, locally nonzero function, low pass
filter, scaling function, translation invariant multiresolution
analysis.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.2.11
References:
- D. Bakić and E. N. Wilson, Scaling sets
and orthonormal wavelets with dilations induced by expanding matrices,
Glas. Mat. Ser. III 46(66) (2011), 189-213.
MathSciNet
CrossRef
- M. Bownik, Tight frames of multidimensional wavelets,
Dedicated to the memory of Richard J. Duffin. J. Fourier Anal. Appl.
3 (1997), 525-542.
MathSciNet
CrossRef
- M. Bownik, Z. Rzeszotnik and D. M. Speegle, A characterization of
dimension functions of wavelets, Appl. Comput. Harmon. Anal. 10
(2001), 71-92.
MathSciNet
CrossRef
- C. K. Chui, An introduction to wavelets, Academic Press,
Inc., Boston, 1992.
MathSciNet
- P. Cifuentes, K. S. Kazarian and A. San Antolín,
Characterization of scaling functions in a multiresolution
analysis, Proc. Amer. Math. Soc. 133 (2005),
1013-1023.
MathSciNet
CrossRef
- A. Cohen, Ondelettes, analyses multirésolutions et filtres
miroirs en quadrature, Ann. Inst. H. Poincaré Anal. Non
Linéaire 7 (1990), 439-459.
MathSciNet
- A. Cohen, I. Daubechies and J. C. Feauveau, Biorthogonal bases
of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992),
485-560.
MathSciNet
CrossRef
- X. Dai and D. R. Larson, Wandering vectors for unitary systems
and orthogonal wavelets, Mem. Amer. Math. Soc., 134 (1998), no. 640, pp. 68.
MathSciNet
CrossRef
- I. Daubechies, Ten lectures on wavelets, SIAM,
Philadelphia, 1992.
MathSciNet
CrossRef
- V. Dobrić, R. F. Gundy and P. Hitczenko, Characterizations of
orthonormal scale functions: a probabilistic approach, J. Geom.
Anal. 10 (2000), 417-434.
MathSciNet
CrossRef
- K. Gröchenig and W. R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of Rn, IEEE Trans. Inform.
Theory 38 (1992), 556-568.
MathSciNet
CrossRef
- Q. Gu and D. Han, On multiresolution analysis (MRA) wavelets in
ℝ n, J. Fourier Anal. Appl. 6 (2000),
437-447.
MathSciNet
CrossRef
- R. F. Gundy, Low-pass filters, martingales, and
multiresolution analyses, Appl. Comput. Harmon. Anal. 9 (2000), 204-219.
MathSciNet
CrossRef
- Y-H. Ha, H. Kang, J. Lee and J. K. Seo, Unimodular wavelets for
L2 and the Hardy space H2, Michigan Math. J. 41 (1994),
345-361.
MathSciNet
CrossRef
- E. Hernández, X. Wang and G. Weiss, Smoothing minimally
supported frequency wavelets. II. J. Fourier Anal. Appl.
3 (1997), 23-41.
MathSciNet
CrossRef
- E. Hernández and G. Weiss, A first course on wavelets, CRC
Press, Inc. 1996.
MathSciNet
CrossRef
- K. S. Kazarian and A. San Antolin, Characterization of
scaling functions in a frame multiresolution analysis in HG2,
in: Topics in mathematical analysis and applications, World Sci. Publ., Hackensack, 2008, 118-140.
MathSciNet
CrossRef
- W. M. Lawton, Necessary and sufficient conditions for
constructing orthonormal wavelet bases, J. Math. Phys. 32 (1991),
57-61.
MathSciNet
CrossRef
- W. M. Lawton, Tight frames of compactly supported affine
wavelets, J. Math. Phys. 31 (1990), 1898-1901.
MathSciNet
CrossRef
- W. R. Madych, Some elementary properties of multiresolution
analyses of L2(Rd), in: Wavelets, Ch. Chui ed., Academic Press, Boston,
1992, 259-294.
MathSciNet
- S. Mallat, Multiresolution approximations and wavelet
orthonormal bases of L2(ℝ),
Trans. Amer. Math. Soc. 315 (1989), 69-87.
MathSciNet
CrossRef
- Y. Meyer, Ondelettes et opérateurs. I, (French) Hermann,
Paris, 1990 [English Translation: Wavelets and operators. I, Cambridge
University Press, 1992.]
MathSciNet
- M. Papadakis, Unitary mappings between multiresolution
analysis of L2(ℝ) and a parameterization of low-pass filters, J.
Fourier Anal. Appl. 4 (1998), 199-214.
MathSciNet
CrossRef
- M. Papadakis, H. Šikić and G. Weiss, The characterization of
low pass filters and some basic properties of wavelets, scaling
functions and related concepts, J. Fourier Anal. Appl. 5 (1999),
495-521.
MathSciNet
CrossRef
- A. San Antolín, Characterization
of low pass filters in a multiresolution analysis, Studia Math.
190 (2009), 99-116.
MathSciNet
CrossRef
- A. San Antolín, On low pass filters in a frame multiresolution analysis, Tohoku Math. J. (2) 63 (2011), 427-439.
MathSciNet
CrossRef
- M. Soto-Bajo, Closure of dilates of shift-invariant subspaces, Cent. Eur. J. Math. 11 (2013), 1785-1799.
MathSciNet
CrossRef
- R. S. Strichartz, Construction of orthonormal
wavelets, in: Wavelets: mathematics and applications, CRC, Boca Raton, 1994, 23-50.
MathSciNet
- E. Weber, On the translation invariance of wavelet subspaces, J. Fourier Anal. Appl. 6 (2000), 551-558.
MathSciNet
CrossRef
- P. Wojtaszczyk, A mathematical introduction to wavelets,
Cambridge University Press, Cambridge, 1997.
MathSciNet
CrossRef
Glasnik Matematicki Home Page