Glasnik Matematicki, Vol. 49, No. 2 (2014), 351-367.
COMBINATORIAL CONVOLUTION SUMS DERIVED FROM DIVISOR FUNCTIONS AND FAULHABER SUMS
Bumkyu Cho, Daeyeoul Kim and Ho Park
Department of Mathematics, Dongguk University-Seoul,
26 Pil-dong 3-ga Jung-gu Seoul,
South Korea
e-mail: bam@dongguk.edu
National Institute for Mathematical Science , Yuseong-daero 1689-gil
Daejeon 305-811,
South Korea
e-mail: daeyeoul@nims.re.kr
Department of Mathematics, Dongguk University-Seoul,,
26 Pil-dong 3-ga Jung-gu Seoul,
South Korea
e-mail: ph1240@dongguk.edu
Abstract.
It is known that certain convolution sums using Liouville identity can be expressed as a combination of divisor functions and Bernoulli numbers. In this article we find seven combinatorial convolution sums derived from divisor functions and Bernoulli numbers.
2010 Mathematics Subject Classification.
33E20, 11A67.
Key words and phrases. Divisor functions, convolution sums, Faulhaber's sum.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.2.09
References:
-
B. C. Berndt, Ramanujan's notebooks. Part II, Springer, 1989.
MathSciNet
CrossRef
- Nesge,
Extrait d'une Lettre de M. Besge à M. Liouville, Journal de mathématiques et appliquées 2e série 7 (1862), 256.
- N. Cheng and K. S. Williams, Evaluation of some convolution sums involving the sum of divisors functions, Yokohama Math. J. 52 (2005), 39-57.
MathSciNet
-
B. Cho, D. Kim, and H. Park, Evaluation of a certain combinatorial convolution sum in higher level cases, J. Math. Anal. Appl. 406 (2013), 203-210.
MathSciNet
CrossRef
- J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S.
Williams, Elementary evaluation of certain convolution sums
involving divisor functions, in: Number theory for the millennium, II, A K Peters, Natick,
2002, 229-274.
MathSciNet
-
D. Kim and A. Bayad, Convolution identities for twisted Eisenstein series and twisted divisor functions, Fixed Point Theory Appl. 2013, 2013:81, 23 pp.
MathSciNet
CrossRef
- D. Kim, A. Kim, and Y. Li,
Convolution sums arising from divisor functions,
J. Korean Math. Soc. 50 (2013), 331-360.
MathSciNet
CrossRef
-
D. Kim, A. Kim and A. Sankaranarayanan, Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions, J. Inequal. Appl. 2013, 2013:225 26 pp.
MathSciNet
CrossRef
- D. B. Lahiri, On Ramanujan's function τ(n) and the divisor function σk(n). I, Bull. Calcutta Math. Soc. 38 (1946), 193-206.
MathSciNet
- G. Melfi,
On some modular identities, in: Number theory, de Gruyter, Berlin, 1998,
371-382.
MathSciNet
-
K. S. Williams, Number theory in the spirit of Liouville, Cambridge University Press, 2011.
MathSciNet
Glasnik Matematicki Home Page