Glasnik Matematicki, Vol. 49, No. 2 (2014), 351-367.

COMBINATORIAL CONVOLUTION SUMS DERIVED FROM DIVISOR FUNCTIONS AND FAULHABER SUMS

Bumkyu Cho, Daeyeoul Kim and Ho Park

Department of Mathematics, Dongguk University-Seoul, 26 Pil-dong 3-ga Jung-gu Seoul, South Korea
e-mail: bam@dongguk.edu

National Institute for Mathematical Science , Yuseong-daero 1689-gil Daejeon 305-811, South Korea
e-mail: daeyeoul@nims.re.kr

Department of Mathematics, Dongguk University-Seoul,, 26 Pil-dong 3-ga Jung-gu Seoul, South Korea
e-mail: ph1240@dongguk.edu


Abstract.   It is known that certain convolution sums using Liouville identity can be expressed as a combination of divisor functions and Bernoulli numbers. In this article we find seven combinatorial convolution sums derived from divisor functions and Bernoulli numbers.

2010 Mathematics Subject Classification.   33E20, 11A67.

Key words and phrases.   Divisor functions, convolution sums, Faulhaber's sum.


Full text (PDF) (free access)

DOI: 10.3336/gm.49.2.09


References:

  1. B. C. Berndt, Ramanujan's notebooks. Part II, Springer, 1989.
    MathSciNet     CrossRef

  2. Nesge, Extrait d'une Lettre de M. Besge à M. Liouville, Journal de mathématiques et appliquées 2e série 7 (1862), 256.

  3. N. Cheng and K. S. Williams, Evaluation of some convolution sums involving the sum of divisors functions, Yokohama Math. J. 52 (2005), 39-57.
    MathSciNet    

  4. B. Cho, D. Kim, and H. Park, Evaluation of a certain combinatorial convolution sum in higher level cases, J. Math. Anal. Appl. 406 (2013), 203-210.
    MathSciNet     CrossRef

  5. J. G. Huard, Z. M. Ou, B. K. Spearman, and K. S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, in: Number theory for the millennium, II, A K Peters, Natick, 2002, 229-274.
    MathSciNet    

  6. D. Kim and A. Bayad, Convolution identities for twisted Eisenstein series and twisted divisor functions, Fixed Point Theory Appl. 2013, 2013:81, 23 pp.
    MathSciNet     CrossRef

  7. D. Kim, A. Kim, and Y. Li, Convolution sums arising from divisor functions, J. Korean Math. Soc. 50 (2013), 331-360.
    MathSciNet     CrossRef

  8. D. Kim, A. Kim and A. Sankaranarayanan, Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions, J. Inequal. Appl. 2013, 2013:225 26 pp.
    MathSciNet     CrossRef

  9. D. B. Lahiri, On Ramanujan's function τ(n) and the divisor function σk(n). I, Bull. Calcutta Math. Soc. 38 (1946), 193-206.
    MathSciNet    

  10. G. Melfi, On some modular identities, in: Number theory, de Gruyter, Berlin, 1998, 371-382.
    MathSciNet    

  11. K. S. Williams, Number theory in the spirit of Liouville, Cambridge University Press, 2011.
    MathSciNet    

Glasnik Matematicki Home Page