Glasnik Matematicki, Vol. 49, No. 2 (2014), 337-350.
ON FINITE INDEX SUBGROUPS OF THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE
Błażej Szepietowski
Institute of Mathematics,
Gdansk University,
Wita Stwosza 57,
80-952 Gdansk,
Poland
e-mail: blaszep@mat.ug.edu.pl
Abstract.
Let M(Nh,n) denote the mapping class group of a compact nonorientable surface of genus h ≥ 7 and n ≤ 1 boundary components, and let T(Nh,n) be the subgroup of M(Nh,n) generated by all Dehn twists. It is known that T(Nh,n) is the unique subgroup of M(Nh,n) of index 2. We prove that T(Nh,n) (and also M(Nh,n)) contains a unique subgroup of index 2g-1(2g-1) up to conjugation, and a unique subgroup of index 2g-1(2g+1) up to conjugation, where g = ⌊(h-1)/2⌋. The other proper subgroups of T(Nh,n) and M(Nh,n) have index greater than 2g-1(2g+1). In particular, the minimum index of a proper subgroup of T(Nh,n) is 2g-1(2g-1).
2010 Mathematics Subject Classification.
20F38, 57N05.
Key words and phrases. Mapping class group, nonorinatble surface, finite index subgroup.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.2.08
References:
- J. A. Berrick, V. Gebhardt and L. Paris, Finite index subgroups of mapping class groups, Proc. London Math. Soc. (3) 108 (2014), 575-599.
MathSciNet
CrossRef
- J. S. Birman and D. R. J. Chillingworth, On the homeotopy group of a non-orientable
surface, Proc. Cambridge Philos. Soc. 71 (1972), 437-448.
MathSciNet
CrossRef
- D. R. J. Chillingworth, A finite set of generators for the homeotopy group of a non-orientable
surface, Proc. Cambridge Philos. Soc. 65 (1969), 409-430.
MathSciNet
CrossRef
- E. K. Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2) 9 (1974/75) 160-164.
MathSciNet
CrossRef
- S. P. Humphries, Generators for the mapping class group, in: Topology of low dimensional manifolds (ed. R. Fenn), Springer-Verlag, Berlin, 1979, 44-47.
MathSciNet
- M. Korkmaz, First homology group of mapping class group of nonorientable surfaces,
Math. Proc. Cambridge Philos. Soc. 123 (1998), 487-499.
MathSciNet
CrossRef
- M. Korkmaz, Low-dimensional homology groups of mapping class groups: a survey,
Turkish J. Math. 26 (2002), 101-114.
MathSciNet
- W. B. R. Lickorish, Homeomorphisms of non-orientable two-manifolds,
Proc. Cambridge Philos. Soc. 59 (1963), 307-317.
MathSciNet
CrossRef
- W. B. R. Lickorish, On the homeomorphisms of a non-orientable surface, Proc. Cambridge Philos. Soc. 61 (1965), 61-64.
MathSciNet
CrossRef
- G. Masbaum and A. W. Reid, All finite groups are involved in the mapping class group, Geom. Topol. 16 (2012), 1393-1411.
MathSciNet
CrossRef
- J. D. McCarthy and U. Pinkall, Representing homology automorphisms of nonorientable surfaces, Max Planc Inst. preprint MPI/SFB 85-11, revised version written in 2004. Available at http://www.math.msu.edu/ mccarthy.
- L. Paris, Small index subgroups of the mapping class group, J. Group Theory 13 (2010), 613-618.
MathSciNet
CrossRef
- L. Paris and B. Szepietowski, A presentation for the mapping class group of a nonorientable surface, preprint, arXiv:1308.5856.
- M. Stukow, Commensurability of geometric subgroups of mapping class groups, Geom. Dedicata 143 (2009), 117-142.
MathSciNet
CrossRef
- M. Stukow, The twist subgroup of the mapping class group of a nonorientable surface, Osaka J. Math. 46 (2009), 717-738.
MathSciNet
CrossRef
- M. Stukow, Generating mapping class groups of nonorientable
surfaces with boundary, Adv. Geom. 10 (2010), 249-273.
MathSciNet
CrossRef
- B. Szepietowski, Embedding the braid group in mapping class groups, Publ. Mat. 54 (2010), 359-368.
MathSciNet
CrossRef
- B. Szepietowski, Low-dimensional linear representations of the mapping class group of a nonorientable surface, Algebr. Geom. Topol. 14 (2014), 565-594.
MathSciNet
CrossRef
- B. Zimmermann, On minimal finite quotients of mapping class groups, Rocky Mountain J. Math. 42 (2012), 1411-1420.
MathSciNet
CrossRef
Glasnik Matematicki Home Page