Glasnik Matematicki, Vol. 49, No. 2 (2014), 263-273.
THE GRAPH OF EQUIVALENCE CLASSES OF ZERO-DIVISORS OF A POSET
Hongxing Liu
School of Mathematical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
e-mail: lhxshanda@163.com
Abstract.
In this paper, we give the definition of the graph of
equivalence classes of zero-divisors of a poset P. We prove that
if [a] has maximal degree in V(γE(P)), then
ann(a) is maximal in Anih(P). Also, we give some
other properties of the graph γE(P). Moreover, we
characterize the cut vertices of γE(P) and study the cliques
of these graphs.
2010 Mathematics Subject Classification. 05E99, 06A07.
Key words and phrases. Zero-divisor graph, poset, cut vertex, equivalence class, clique.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.2.02
References:
- M. Alizadeh, A. K. Das, H. R. Maimani, M. R. Pournaki and S. Yassemi,
On the diameter and girth of zero-divisor graphs of posets,
Discrete Appl. Math. 160 (2012), 1319-1324.
MathSciNet
CrossRef
- D. F. Anderson and J. D. LaGrange, Commutative Boolean monoids,
reduced rings, and the compressed zero-divisor graph, J. Pure Appl.
Algebra 216 (2012), 1626-1636.
MathSciNet
CrossRef
- D. F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras,
J. Pure Appl. Algebra 180 (2003), 221-241.
MathSciNet
CrossRef
- D. D. Anderson and M. Naseer, Beck's coloring of a commutative
ring, J. Algebra 159 (1993), 500-514.
MathSciNet
CrossRef
- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
MathSciNet
CrossRef
- M. Axtell, N. Baeth and J. Stickles, Cut vertices in zero-divisor graphs of finite commutative rings, Comm. Algebra 39 (2011), 2179-2188.
MathSciNet
CrossRef
- I. Beck, Coloring of commutative rings, J. Algebra
116 (1988), 208-226.
MathSciNet
CrossRef
- F. R. DeMeyer and L. DeMeyer, Zero-divisor graphs of semigroups, J. Algebra 283 (2005), 190-198.
MathSciNet
CrossRef
- F. R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph
of a commutative semigroup, Semigroup Forum 65 (2002),
206-214.
MathSciNet
CrossRef
- D. Dolžan and P. Oblak, The zero-divisor graph of rings and
semirings, Internat. J. Algebra Comput. 22 (2012),
1250033-1-1250033-20.
MathSciNet
CrossRef
- S. Ebrahimi Atani, An ideal-based zero-divisor graph of a
commutative semiring, Glas. Mat. Ser. III 44(64) (2009),
141-153.
MathSciNet
CrossRef
- E. Estaji and K. Khashyarmanesh, The zero-divisor graph of a
lattice, Results Math. 61 (2012), 1-11.
MathSciNet
CrossRef
- R. Halaš and M. Jukl, On Beck's coloring of posets, Discrete Math. 309 (2009), 4584-4589.
MathSciNet
CrossRef
- R. Halaš and H. Länger, The zerodivisor graph of a qoset, Order 27 (2010), 343-351.
MathSciNet
CrossRef
- V. Joshi, Zero divisor graph of a poset with respect to an ideal, Order 29 (2012), 499-506.
MathSciNet
CrossRef
- D. Lu and T. Wu, The zero-divisor graphs of posets and an application
to semigroups, Graphs Combin. 26 (2010), 793-804.
MathSciNet
CrossRef
- H. R. Maimani, Median and center of zero-divisor graph of commutative
semigroups, Iran. J. Math. Sci. Inform. 3 (2008), 69-76.
MathSciNet
- S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), 3533-3558.
MathSciNet
CrossRef
- S. Spiroff and C. Wickham, A zero divisor graph determined by
equivalence classes of zero-divisors, Comm. Algebra 39
(2011), 2338-2348.
MathSciNet
CrossRef
- Z. Xue and S. Liu, Zero-divisor graphs of partially ordered sets,
Appl. Math. Lett. 23 (2010), 449-452.
MathSciNet
CrossRef
Glasnik Matematicki Home Page