Glasnik Matematicki, Vol. 49, No. 2 (2014), 263-273.

THE GRAPH OF EQUIVALENCE CLASSES OF ZERO-DIVISORS OF A POSET

Hongxing Liu

School of Mathematical Sciences, Shandong Normal University, 250014 Jinan, P. R. China
e-mail: lhxshanda@163.com


Abstract.   In this paper, we give the definition of the graph of equivalence classes of zero-divisors of a poset P. We prove that if [a] has maximal degree in V(γE(P)), then ann(a) is maximal in Anih(P). Also, we give some other properties of the graph γE(P). Moreover, we characterize the cut vertices of γE(P) and study the cliques of these graphs.

2010 Mathematics Subject Classification.   05E99, 06A07.

Key words and phrases.   Zero-divisor graph, poset, cut vertex, equivalence class, clique.


Full text (PDF) (free access)

DOI: 10.3336/gm.49.2.02


References:

  1. M. Alizadeh, A. K. Das, H. R. Maimani, M. R. Pournaki and S. Yassemi, On the diameter and girth of zero-divisor graphs of posets, Discrete Appl. Math. 160 (2012), 1319-1324.
    MathSciNet     CrossRef

  2. D. F. Anderson and J. D. LaGrange, Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph, J. Pure Appl. Algebra 216 (2012), 1626-1636.
    MathSciNet     CrossRef

  3. D. F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180 (2003), 221-241.
    MathSciNet     CrossRef

  4. D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993), 500-514.
    MathSciNet     CrossRef

  5. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
    MathSciNet     CrossRef

  6. M. Axtell, N. Baeth and J. Stickles, Cut vertices in zero-divisor graphs of finite commutative rings, Comm. Algebra 39 (2011), 2179-2188.
    MathSciNet     CrossRef

  7. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
    MathSciNet     CrossRef

  8. F. R. DeMeyer and L. DeMeyer, Zero-divisor graphs of semigroups, J. Algebra 283 (2005), 190-198.
    MathSciNet     CrossRef

  9. F. R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), 206-214.
    MathSciNet     CrossRef

  10. D. Dolžan and P. Oblak, The zero-divisor graph of rings and semirings, Internat. J. Algebra Comput. 22 (2012), 1250033-1-1250033-20.
    MathSciNet     CrossRef

  11. S. Ebrahimi Atani, An ideal-based zero-divisor graph of a commutative semiring, Glas. Mat. Ser. III 44(64) (2009), 141-153.
    MathSciNet     CrossRef

  12. E. Estaji and K. Khashyarmanesh, The zero-divisor graph of a lattice, Results Math. 61 (2012), 1-11.
    MathSciNet     CrossRef

  13. R. Halaš and M. Jukl, On Beck's coloring of posets, Discrete Math. 309 (2009), 4584-4589.
    MathSciNet     CrossRef

  14. R. Halaš and H. Länger, The zerodivisor graph of a qoset, Order 27 (2010), 343-351.
    MathSciNet     CrossRef

  15. V. Joshi, Zero divisor graph of a poset with respect to an ideal, Order 29 (2012), 499-506.
    MathSciNet     CrossRef

  16. D. Lu and T. Wu, The zero-divisor graphs of posets and an application to semigroups, Graphs Combin. 26 (2010), 793-804.
    MathSciNet     CrossRef

  17. H. R. Maimani, Median and center of zero-divisor graph of commutative semigroups, Iran. J. Math. Sci. Inform. 3 (2008), 69-76.
    MathSciNet    

  18. S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), 3533-3558.
    MathSciNet     CrossRef

  19. S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero-divisors, Comm. Algebra 39 (2011), 2338-2348.
    MathSciNet     CrossRef

  20. Z. Xue and S. Liu, Zero-divisor graphs of partially ordered sets, Appl. Math. Lett. 23 (2010), 449-452.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page