Glasnik Matematicki, Vol. 49, No. 1 (2014), 221-234.
STRONG CONVERGENCE FOR WEIGHTED SUMS OF ρ*-MIXING RANDOM VARIABLES
Yongfeng Wu and JiangYan Peng
College of Mathematics and Computer Science, Tongling University, 244000 Tongling, China,
and,
Center for Financial Engineering and School of Mathematical Sciences, Soochow University, 215006 Suzhou, China
e-mail: wyfwyf@126.com
School of Mathematics Science, University of Electronic Science and Technology of China, 611731 Chengdu, China
e-mail: cdpengjy@126.com
Abstract.
The authors discuss the strong convergence for weighted sums of sequences of ρ*-mixing random variables.
The obtained results extend and improve the corresponding theorem of Bai and Cheng [Bai, Z. D., Cheng, P. E., 2000.
Marcinkiewicz strong laws for linear statistics. Statist. Probab. Lett., 46, 105-112].
The method used in this article differs from that of Bai and Cheng (2000).
2010 Mathematics Subject Classification.
60F15.
Key words and phrases. Strong convergence, ρ*-mixing random variable, weighted sums.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.1.15
References:
- J. An and D. M. Yuan, Complete convergence of weighted sums for ρ̃-mixing sequence of random variables,
Statist. Probab. Lett. 78 (2000), 1466-1472.
MathSciNet
CrossRef
- Z. D. Bai and P. E. Cheng, Marcinkiewicz strong laws for linear statistics.
Statist. Probab. Lett. 46 (2000), 105-112.
MathSciNet
CrossRef
- R. C. Bradley,
Equivalent mixing conditions for random fields,
Technical Report 336, Center for Stochastic Processes, Dept. Statistics, Univ. North Carolina, Chapel Hill.
- K. Budsaba, D. H. Qiu, H. Urmeneta, and A. Volodin,
Complete convergence for weighted sums of arrays of
rowwise ρ̃-mixing random variables.
Thail. Stat. 10 (2012), 141-146.
- G. H. Cai,
Marcinkiewicz strong laws for linear statistics of ρ̃-mixing sequences of random variables, An. Acad. Bras. Ciênc. 78 (2006),
615-621.
MathSciNet
CrossRef
- G. H. Cai, Strong laws of large numbers for weighted sums of ρ̃-mixing
random variables, Math. Slovaca 57 (2007),
381-388.
MathSciNet
CrossRef
- G. H. Cai, Strong laws for weighted sums of NA random variables, Metrika 68 (2008),
323-331.
MathSciNet
CrossRef
- P. Y. Chen and S. X. Gan, Limiting behavior of weighted sums of i.i.d. random variables, Statist. Probab. Lett. 7 (2007),
1589-1599.
MathSciNet
CrossRef
- J. Cuzick, A strong law for weighted sums of i.i.d. random variables, J. Theoret. Probab. 8 (1995),
625-641.
MathSciNet
CrossRef
- S. X. Gan, Almost sure convergence for ρ̃-mixing random variable sequences, Statist. Probab. Lett. 67 (2004),
289-298.
MathSciNet
CrossRef
- M. L. Guo and D. J. Zhu, Equivalent conditions of complete moment convergence of weighted
sums for ρ*-mixing sequence of random variables, Statist. Probab. Lett. 83 (2013), 13-20.
MathSciNet
CrossRef
- P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 25-31.
MathSciNet
CrossRef
- M. H. Ko, K. H. Han and T. S. Kim, Strong laws of large numbers for weighted sums of negatively dependent random variables, J. Korean Math. Soc. 43 (2006),
1325-1338.
MathSciNet
CrossRef
- A. Kuczmaszewska, On complete convergence for arrays of rowwise dependent
random variables, Statist. Probab. Lett. 77 (2007),
1050-1060.
MathSciNet
CrossRef
- C. C. Moore, The degree of randomness in a stationary time series, Ann. Math. Statist. 34 (1963),
1253-1258.
MathSciNet
CrossRef
- M. Peligrad and A. Gut, Almost-sure results for a class of dependent random variables, J. Theoret. Probab. 12 (1999),
87-104.
MathSciNet
CrossRef
- D. H. Qiu, Convergence properties for weighted sums of ρ̃-mixing random variables, Acta Math. Sci., Ser. A 31 (2007), 132-141 (in Chinese).
- Q. M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables, J. Theoret. Probab. 13 (2000),
343-356.
MathSciNet
CrossRef
- A. T. Shen, On the strong convergence rate for weighted sums of arrays of rowwise negatively orthant dependent
random variables, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 107 (2013), 257-271.
CrossRef
- S. H. Sung, Strong laws for weighted sums of i.i.d. random variables, Statist. Probab. Lett. 52 (2001),
413-419.
MathSciNet
CrossRef
- S. Utev and M. Peligrad, Maximal inequalities and an invariance principle for a
class of weakly dependent random variables, J. Theoret. Probab. 16 (2003), 101-115.
MathSciNet
CrossRef
- X. J. Wang, X. Q. Li, W. Z. Yang and S. H. Hu, On complete convergence for arrays of rowwise weakly dependent
random variables, Appl. Math. Lett. 25 (2012),
1916-1920.
MathSciNet
CrossRef
- Q. Y. Wu, Y. Y. Jiang, Some strong limit theorems for ρ̃-mixing sequences of
random variables, Statist. Probab. Lett. 78 (2008),
1017-1023.
MathSciNet
CrossRef
- Q. Y. Wu, Complete convergence for weighted sums of sequences of negatively dependent random variables, J. Probab. Stat. (2011) Article ID : 202015.
MathSciNet
CrossRef
- W. B. Wu, On the strong convergence of a weighted sum, Statist. Probab. Lett. 44 (1999),
19-22.
MathSciNet
CrossRef
- Y. F. Wu, C. H. Wang and A. Volodin, Limiting behavior for arrays of rowwise
ρ*-mixing random variables, Lith. Math. J. 52 (2012),
214-221.
MathSciNet
CrossRef
- S. C. Yang, Moment inequality for mixing sequences and nonparametric estimation, Acta Math. Sinica (Chin. Ser.) 40 (1997),
271-279 (in Chinese).
MathSciNet
- H. Zarei and H. Jabbari, Complete convergence of weighted sums under negative dependence, Statist. Papers 52 (2011),
413-418.
MathSciNet
CrossRef
Glasnik Matematicki Home Page