Glasnik Matematicki, Vol. 49, No. 1 (2014), 195-220.
A SHAPE THEORETIC APPROACH TO GENERALIZED COHOMOLOGICAL DIMENSION WITH RESPECT TO TOPOLOGICAL SPACES
Takahisa Miyata
Department of Mathematics and Informatics, Graduate School of Human Development and Environment, Kobe University, Kobe 657-8501, Japan
e-mail: tmiyata@kobe-u.ac.jp
Abstract.
A. N. Dranishnikov introduced the notion of generalized cohomological dimension of compact metric spaces
with respect to CW spectra.
In this paper, taking an inverse system approach,
we generalize this definition and obtain two types of generalized comological dimension
with respect to general topological spaces, which are objects in the stable shape category.
We characterize those two types of generalized cohomological dimension in terms of maps
and obtain their fundamental properties.
In particular, we obtain their relations to the integral cohomological dimension and the covering dimension.
Moreover, we study the generalized cohomological dimensions of compact Hausdorff spaces
with respect to the Kahn continuum and the Hawaiian earing.
2010 Mathematics Subject Classification.
55P55, 55P30.
Key words and phrases. Shape theory, stable shape theory, generalized cohomological dimension, CW spectrum.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.1.14
References:
-
J. F. Adams,
On the groups J(X) IV,
Topology 5 (1966), 21-71.
MathSciNet
CrossRef
-
J. F. Adams,
Stable homotopy and generalised homology,
University of Chicago Press, Chicago, 1974.
MathSciNet
-
P. S. Alexandroff,
Zum allgemeinen Dimensionsproblem,
Nachr. Göttingen (1928), 25-44.
-
P. S. Alexandroff,
Dimensionstheorie,
Math. Ann. 106 (1932), 161-238.
MathSciNet
CrossRef
-
A. N. Dranishnikov,
On a problem of P. S. Aleksandrov,
Math. USSR-Sb. 63 (1989), 539-545.
MathSciNet
CrossRef
-
A. N. Dranishnikov,
Generalized cohomological dimension of compact metric spaces,
Tsukuba J. Math. 14 (1990), 247-262.
MathSciNet
-
A. N. Dranishnikov and J. Dydak,
Extension dimension and extension types,
Tr. Mat. Inst. Steklova 212 (1996), 61-94.
MathSciNet
-
J. Dydak,
Cohomological dimension theory,
in Handbook of geometric topology, R. J. Daverman (ed.) et al., North-Holland, Amsterdam, 2002, 423-470.
MathSciNet
-
H. W. Henn,
Duality in stable shape theory,
Arch. Math. (Basel) 36 (1981), 327-341.
MathSciNet
CrossRef
-
P. J. Huber,
Homotopical cohomology and Čech cohomology,
Math. Ann. 144 (1961), 73-76.
MathSciNet
CrossRef
-
D. S. Kahn,
An example in Čech cohomology,
Proc. Amer. Math. Soc. 16 (1965), 584.
MathSciNet
CrossRef
-
E. L. Lima,
The Spanier-Whitehead duality in new homotopy categories,
Summa Brasil. Math. 4 (1959), 91-148.
MathSciNet
-
S. Mardešić and J. Segal,
Shape theory. The inverse system approach,
North Holland, Amsterdam-New York, 1982.
MathSciNet
-
T. Miyata,
Generalized stable shape and duality,
Topology Appl. 109 (2001), 75-88.
MathSciNet
CrossRef
-
T. Miyata,
Approximate extension property of mappings,
Top. Appl. 159 (2012), 921-932.
MathSciNet
CrossRef
-
T. Miyata and J. Segal,
Generalized stable shape and the Whitehead theorem,
Topology Appl. 63 (1995), 139-164.
MathSciNet
CrossRef
-
T. Miyata and J. Segal,
Generalized stable shape and Brown's representation theorem,
Topology Appl. 94 (1999), 275-305.
MathSciNet
CrossRef
-
S. Nowak,
On the relationships between shape properties of subcompacta of Sn and homotopy properties of their complements,
Fund. Math. 128 (1987), 47-60.
MathSciNet
-
S. Nowak,
On the stable homotopy types of the complements of subcompacta of a manifold,
Bull. Polish Acad. Sci. Math. 35 (1987), 359-363.
MathSciNet
-
S. Nowak,
Stable cohomotopy groups of compact spaces,
Fund. Math. 180 (2003), 99-137.
MathSciNet
CrossRef
-
S. Nowak,
On stable cohomotopy groups of compact spaces,
Topology Appl. 153 (2005), 464-476.
MathSciNet
CrossRef
-
S. Nowak,
On stable cohomotopy groups of compact spaces II,
Topology Appl. 158 (2011), 152-158.
MathSciNet
CrossRef
-
E. G. Skljarenko,
On the definition of cohomology dimension,
Soviet Math. Dokl. 6 (1965), 478-479.
MathSciNet
-
I. A. Švedov,
Dimensions and soft sheaves,
in General topology and its relations to modern analysis and algebra. II.
Proc. Second Prague Topological Symposium 1966, Prague, 1967, 347-348.
-
R. M. Switzer,
Algebraic topology-homotopy and homology,
Springer-Verlag, New York-Heidelberg, 1975.
MathSciNet
-
J. J. Walsh,
Dimension, cohomological dimension, and cell-like mappings,
in Shape theory and geometric topology, Proceedings, Dubrovnik, Springer, Berlin-New York, 1981, 105-118.
MathSciNet
Glasnik Matematicki Home Page