Glasnik Matematicki, Vol. 49, No. 1 (2014), 179-193.
APOSYNDETIC PROPERTIES OF THE N-FOLD SYMMETRIC PRODUCT SUSPENSION OF A CONTINUUM
Franco Barragán
Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, K. M. 2.5 Carretera Huajuapan-Acatlima,
Huajuapan de León, Oaxaca, C.P. 69000, México
e-mail: frabame@hotmail.com
Abstract.
In this paper the n-fold symmetric product suspension of a continuum is investigated with respect to the properties of
aposyndesis such as: aposyndesis, finite aposyndesis, mutual aposyndesis and strictly nonmutual aposyndesis.
2010 Mathematics Subject Classification.
54B20, 54F15.
Key words and phrases. Aposyndetic continuum, chainable continuum, mutually aposyndetic, symmetric product, strictly nonmutually aposyndetic.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.1.13
References:
- F. Barrragán, On the n-fold symmetric product suspensions of a
continuum, Topology Appl. 157 (2010), 597-604.
MathSciNet
CrossRef
- F. Barrragán, Induced maps on n-fold symmetric product suspensions, Topology Appl. 158 (2011), 1192-1205.
MathSciNet
CrossRef
- D. E. Bennett, Aposyndetic properties of unicoherent continua, Pacific J. Math. 37 (1971), 585-589.
MathSciNet
CrossRef
- K. Borsuk and S. Ulam, On symmetric products of topological space, Bull. Amer. Math. Soc. 37 (1931), 875-882.
MathSciNet
CrossRef
- J. F. Davis, The equivalence of zero span and zero semispan, Proc. Amer. Math. Soc. 90 (1984), 133-138.
MathSciNet
CrossRef
- J. T. Goodykoontz, Jr., Aposyndetic properties of hyperspaces, Pacific J. Math. 27 (1973), 91-98.
MathSciNet
CrossRef
- H. Hosokawa, Mutual aposyndesis in n-fold hyperspaces, Houston J. Math. 35 (2009), 131-137.
MathSciNet
- F. B. Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math. 63 (1941), 545-553.
MathSciNet
CrossRef
- H. Katsuura, Characterization of arcs by products diagonals, manuscript.
- A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-214.
MathSciNet
- S. Macías, Aposyndetic properties of symmetric products of continua, Topology Proc. 22 (1997), 281-296.
MathSciNet
- S. Macías, On the hyperspaces Cn(X) of a continuum X, Topology Appl. 109 (2001), 237-256.
MathSciNet
CrossRef
- S. Macías, On the n-fold hyperspace suspension of continua, Topology Appl. 138 (2004), 125-138.
MathSciNet
CrossRef
- S. Macías, Topics on Continua, Pure and Applics Mathematics Series, Vol. 275, Chapman & Hall/CRC, Taylor & Francis Group, 2005.
MathSciNet
- J. C. Macías, On n-fold pseudo-hyperspace suspensions of continua, Glas. Mat. Ser. III 43 (2008), 439-449.
MathSciNet
CrossRef
- J. M. Martínez-Montejano, Mutual aposyndesis of symmetric products, Topology Proc. 24 (1999), 203-213.
MathSciNet
- S. B. Nadler, Jr., Continua which are an one-to-one continuous image of [0,∞), Fund. Math. 75 (1972), 123-133.
MathSciNet
- S. B. Nadler, Jr., Hyperspaces of Sets, Monographs and Textbooks in Pure and Applied Math., Vol. 49, Marcel Dekker, New York-Basel, 1978.
MathSciNet
- S. B. Nadler, Jr., Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Math., Vol. 158, Marcel Dekker, New York, 1992.
MathSciNet
- L. E. Rogers, Mutually aposyndetic products of chainable continua, Pacific J. Math. 37 (1971), 805-812.
MathSciNet
CrossRef
- G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942.
MathSciNet
Glasnik Matematicki Home Page