Glasnik Matematicki, Vol. 49, No. 1 (2014), 179-193.

APOSYNDETIC PROPERTIES OF THE N-FOLD SYMMETRIC PRODUCT SUSPENSION OF A CONTINUUM

Franco Barragán

Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, K. M. 2.5 Carretera Huajuapan-Acatlima, Huajuapan de León, Oaxaca, C.P. 69000, México
e-mail: frabame@hotmail.com


Abstract.   In this paper the n-fold symmetric product suspension of a continuum is investigated with respect to the properties of aposyndesis such as: aposyndesis, finite aposyndesis, mutual aposyndesis and strictly nonmutual aposyndesis.

2010 Mathematics Subject Classification.   54B20, 54F15.

Key words and phrases.   Aposyndetic continuum, chainable continuum, mutually aposyndetic, symmetric product, strictly nonmutually aposyndetic.


Full text (PDF) (free access)

DOI: 10.3336/gm.49.1.13


References:

  1. F. Barrragán, On the n-fold symmetric product suspensions of a continuum, Topology Appl. 157 (2010), 597-604.
    MathSciNet     CrossRef

  2. F. Barrragán, Induced maps on n-fold symmetric product suspensions, Topology Appl. 158 (2011), 1192-1205.
    MathSciNet     CrossRef

  3. D. E. Bennett, Aposyndetic properties of unicoherent continua, Pacific J. Math. 37 (1971), 585-589.
    MathSciNet     CrossRef

  4. K. Borsuk and S. Ulam, On symmetric products of topological space, Bull. Amer. Math. Soc. 37 (1931), 875-882.
    MathSciNet     CrossRef

  5. J. F. Davis, The equivalence of zero span and zero semispan, Proc. Amer. Math. Soc. 90 (1984), 133-138.
    MathSciNet     CrossRef

  6. J. T. Goodykoontz, Jr., Aposyndetic properties of hyperspaces, Pacific J. Math. 27 (1973), 91-98.
    MathSciNet     CrossRef

  7. H. Hosokawa, Mutual aposyndesis in n-fold hyperspaces, Houston J. Math. 35 (2009), 131-137.
    MathSciNet    

  8. F. B. Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math. 63 (1941), 545-553.
    MathSciNet     CrossRef

  9. H. Katsuura, Characterization of arcs by products diagonals, manuscript.

  10. A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-214.
    MathSciNet    

  11. S. Macías, Aposyndetic properties of symmetric products of continua, Topology Proc. 22 (1997), 281-296.
    MathSciNet    

  12. S. Macías, On the hyperspaces Cn(X) of a continuum X, Topology Appl. 109 (2001), 237-256.
    MathSciNet     CrossRef

  13. S. Macías, On the n-fold hyperspace suspension of continua, Topology Appl. 138 (2004), 125-138.
    MathSciNet     CrossRef

  14. S. Macías, Topics on Continua, Pure and Applics Mathematics Series, Vol. 275, Chapman & Hall/CRC, Taylor & Francis Group, 2005.
    MathSciNet    

  15. J. C. Macías, On n-fold pseudo-hyperspace suspensions of continua, Glas. Mat. Ser. III 43 (2008), 439-449.
    MathSciNet     CrossRef

  16. J. M. Martínez-Montejano, Mutual aposyndesis of symmetric products, Topology Proc. 24 (1999), 203-213.
    MathSciNet    

  17. S. B. Nadler, Jr., Continua which are an one-to-one continuous image of [0,∞), Fund. Math. 75 (1972), 123-133.
    MathSciNet    

  18. S. B. Nadler, Jr., Hyperspaces of Sets, Monographs and Textbooks in Pure and Applied Math., Vol. 49, Marcel Dekker, New York-Basel, 1978.
    MathSciNet    

  19. S. B. Nadler, Jr., Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Math., Vol. 158, Marcel Dekker, New York, 1992.
    MathSciNet    

  20. L. E. Rogers, Mutually aposyndetic products of chainable continua, Pacific J. Math. 37 (1971), 805-812.
    MathSciNet     CrossRef

  21. G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R. I., 1942.
    MathSciNet    


Glasnik Matematicki Home Page