Glasnik Matematicki, Vol. 49, No. 1 (2014), 163-178.
POLYHARMONIC MAPPINGS AND J. C. C. NITSCHE TYPE INEQUALITIES
David Kalaj and Saminathan Ponnusamy
University of Montenegro,
Faculty of natural sciences and mathematics,
Cetinjski put b.b., 81000 Podgorica,
Montenegro
e-mail: davidk@t-com.me
Indian Statistical Institute (ISI), Chennai Centre,
SETS (Society for Electronic Transactions and security),
MGR Knowledge City, CIT Campus, Taramani,
Chennai 600 113, India
and
Indian Institute of Technology Madras,
Chennai-600 036, India
e-mail: samy@isichennai.res.in & samy@iitm.ac.in
Abstract.
In this paper a J. C. C. Nitsche type inequality
for polyharmonic mappings between rounded annuli on the Euclidean
space Rd is considered. The case of radial biharmonic mappings between
annuli on the complex plane and the corresponding inequality is
studied in detail.
2010 Mathematics Subject Classification.
30C55, 31C05.
Key words and phrases. Harmonic mappings, poly-harmonic mappings, annuli.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.1.12
References:
- N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic functions, Clarendon Press, Oxford, 1983.
MathSciNet
-
Z.-C. Han, Remarks on the geometric behavior of
harmonic maps between surfaces, in Elliptic and
parabolic methods in geometry, Minneapolis, 1994, Chow, Ben (ed.) et al., A K Peters, Wellesley, 1996, 57-66.
MathSciNet
- T. Iwaniec, L. K. Kovalev and J. Onninen,
The Nitsche conjecture, J. Amer. Math. Soc. 24 (2011), 345-373.
MathSciNet
CrossRef
-
T. Iwaniec, L. K. Kovalev and J. Onninen,
Doubly connected minimal surfaces and extremal harmonic
mappings, J. Geom. Anal. 22 (2012), 726-762.
MathSciNet
CrossRef
-
D. Kalaj, Harmonic maps between annuli on Riemann
surfaces, Isr. J. Math. 182 (2011), 123-147.
MathSciNet
CrossRef
-
D. Kalaj, On the univalent solution of PDE Δ u=f
between spherical annuli, J. Math. Anal. Appl. 327 (2007),
1-11.
MathSciNet
CrossRef
-
D. Kalaj, On the Nitsche conjecture for harmonic
mappings in R2 and R3, Israel J. Math.
150 (2005), 241-251.
MathSciNet
CrossRef
-
A. Lyzzaik, The modulus of the image annuli under univalent harmonic mappings and a conjecture of Nitsche,
J. London Math. Soc. (2) 64 (2001), 369-384.
MathSciNet
CrossRef
-
J. C. C. Nitsche, On the modulus of doubly connected
regions under harmonic mappings, Amer. Math. Monthly 69
(1962), 781-782.
MathSciNet
CrossRef
-
M. Pavlović, Decompositions of Lp and Hardy spaces of polyharmonic functions, J. Math. Anal. Appl. 216 (1997),
499-509.
MathSciNet
CrossRef
-
A. Weitsman, Univalent harmonic mappings of annuli and a
conjecture of J. C. C. Nitsche, Israel J. Math. 124 (2001), 327-331.
MathSciNet
CrossRef
Glasnik Matematicki Home Page