Glasnik Matematicki, Vol. 49, No. 1 (2014), 123-161.
IRREDUCIBILITY CRITERION FOR REPRESENTATIONS INDUCED BY ESSENTIALLY UNITARY ONES (CASE OF NON-ARCHIMEDEAN GL(n, 𝒜))
Marko Tadić
Department of Mathematics,
University of Zagreb,
Bijenička 30, 10000 Zagreb,
Croatia
e-mail: tadic@math.hr
Abstract.
Let 𝒜 be a finite dimensional central division algebra over a local non-archimedean field F.
Fix any parabolic subgroup P of GL(n,𝒜) and a Levi factor M of P. Let π be an irreducible unitary representation of M and φ a (not necessarily unitary) character of M. We give an explicit necessary and sufficient condition for the parabolically induced representation
IndPGL(n,𝒜)(φπ)
to be irreducible.
2010 Mathematics Subject Classification.
22E50.
Key words and phrases. Non-archimedean local fields, division algebras, general linear groups, Speh representations, parabolically induced representations, reducibility, unitarizability.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.1.11
References:
-
A.-M. Aubert, Dualité dans le groupe de Grothendieck de la catégorie
des représentations lisses de longueur finie d'un groupe réductif p-
adique, Trans. Amer. Math. Soc. 347 (1995), 2179-2189; Erratum,
Trans. Amer. Math. Soc 348 (1996), 4687-4690.
MathSciNet
CrossRef
MathSciNet
CrossRef
-
A. I. Badulescu, On p-adic Speh representations, Bulletin de la SMF, to appear, http://arxiv.org/pdf/1110.5080v1.pdf.
- A. I. Badulescu, G. Henniart, B. Lemaire and V. Sécherre, Sur le dual unitaire de GLr(D), Amer. J. Math. 132 (2010), 1365-1396.
MathSciNet
CrossRef
- A. I. Badulescu, E. Lapid and A. Míngues, Une condition suffisante pour l'irreducibilite d'une induite parabolique de GL(m,D), Ann. Inst. Fourier, to appear, http://www.math.jussieu.fr/~minguez/Alberto_Minguez/Publications_files/BLM_final.pdf
-
A. I. Badulescu and D. A. Renard,
Sur une conjecture de Tadić,
Glas. Mat. Ser. III 39(59) (2004),
49-54.
MathSciNet
CrossRef
-
A. I. Badulescu and D. A. Renard, Zelevinsky involution and Mœglin-Waldspurger algorithm for GLn(D),
in Functional analysis IX, 9-15, Univ. Aarhus, Aarhus, 2007.
MathSciNet
-
A. I. Badulescu and D. A. Renard,
Unitary dual of GLn at Archimedean places and global Jacquet-Langlands correspondence,
Compos. Math. 146 (2010), 1115-1164.
MathSciNet
CrossRef
-
C. J. Bushnell and P. C. Kutzko, Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. (3) 77 (1998), 582-634.
MathSciNet
CrossRef
-
P. Deligne, D. Kazhdan and M.-F. Vignéras,
Représentations des algèbres centrales simples
p-adiques, in
"Représentations des Groupes
Réductifs sur un Corps Local" by Bernstein, J.-N.,
Deligne, P., Kazhdan, D. and Vignéras, M.-F. ,
Hermann, Paris, 1984.
MathSciNet
- E. Lapid and A. Mínguez,
On a determinantal formula of Tadić, Amer. J. Math. 136 (2014), 111-142.
MathSciNet
CrossRef
- B. Leclerc, M. Nazarov and J.-Y. Thibon, Induced representations of affine Hecke algebras and canonical bases of quantum groups, in Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Birkhüser Boston, Boston, 2003, 115-153.
MathSciNet
-
G. Lusztig,
Quivers, perverse sheaves, and quantized enveloping algebras,
J. Amer. Math. Soc. 4 (1991), 365-421.
MathSciNet
CrossRef
-
A. Mínguez, Sur l'irréductibilité d'une induite parabolique, J. Reine Angew. Math. 629 (2009), 107-131.
MathSciNet
CrossRef
-
A. Mínguez and V. Sécherre, Représentations banales de GL(m,D), Compos. Math. 149 (2013), 679-704.
MathSciNet
CrossRef
-
C. Mœglin and J.-L. Waldspurger, Sur l'involution de Zelevinski, J. Reine Angew. Math. 372 (1986), 136-177.
MathSciNet
CrossRef
-
C. Mœglin and J.-L. Waldspurger,
Le spectre résiduel de GL(n),
Ann. Sci. École Norm. Sup. (4)
22
(1989),
605-674.
MathSciNet
CrossRef
-
F. Rodier,
Représentations de GL(n,k) où k est un
corps p-adique,
Séminaire Bourbaki 587 (1982), Astérisque
92-93 (1982),
201-218.
MathSciNet
- P. Schneider and U. Stuhler,
Representation theory and sheaves on the Bruhat-Tits building,
Inst. Hautes Études Sci. Publ. Math. No. 85
(1997), 97-191.
MathSciNet
CrossRef
- V. Sécherre, Représentations lisses de GL(m,D). I. Caractères simples, Bull. Soc. Math. France 132 (2004), 327-396.
MathSciNet
- V. Sécherre, Représentations lisses de GL(m,D). II. β-extensions, Compos. Math. 141 (2005), 1531-1550.
MathSciNet
CrossRef
- V. Sécherre, Représentations lisses de GLm(D). III. Types simples, Ann. Sci. École Norm. Sup. (4) 38 (2005), 951-977.
MathSciNet
CrossRef
- V. Sécherre and S. Stevens, Représentations lisses de GLm(D). IV. Représentations supercuspidales, J. Inst. Math. Jussieu 7 (2008), 527-574.
MathSciNet
CrossRef
-
V. Sécherre,
Proof of the Tadić conjecture (U0) on the unitary dual
of GLm(D),
J. Reine Angew. Math.
626 (2009),
187-203.
MathSciNet
CrossRef
- B. Speh, Unitary representations of GL(n, R) with non-trivial
(g, K)-cohomology, Invent. Math. 71 (1983), 443-465.
MathSciNet
CrossRef
-
M. Tadić, Unitary representations of general linear group over real and complex field, preprint MPI/SFB 85-22, Bonn, 1985, http://www.mpim-bonn.mpg.de/preblob/5395.
-
M. Tadić, Classification of unitary representations in irreducible
representations of general linear group (non-Archimedean case), Ann. Sci.
École Norm. Sup. (4) 19 (1986), 335-382.
MathSciNet
CrossRef
-
M. Tadić,
Induced representations of GL(n,A) for
p-adic division algebras A,
J. Reine Angew. Math.
405
(1990),
48-77.
MathSciNet
CrossRef
-
M. Tadić, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29-91.
MathSciNet
CrossRef
-
M. Tadić, GL(n, C)^ and
G L(n, R)^ ,
in ``Automorphic Forms and L-functions II,
Local Aspects",
Contemporary Mathematics
489,
2009,
285-313.
MathSciNet
CrossRef
- M. Tadić,
On reducibility and
unitarizability for classical p-adic groups, some general results,
Canad. J. Math. 61 (2009), 427-450.
MathSciNet
CrossRef
- M. Tadić,
On reducibility points beyond ends of complementary series of p-adic GL(n), preprint, 2013, http://arxiv.org/pdf/1310.4644v1.pdf.
- A. V. Zelevinsky,
Induced representations of reductive p-adic groups II. On
irreducible representations of GL(n),
Ann. Sci. École Norm. Sup. (4)
13 (1980), 165-210.
MathSciNet
CrossRef
Glasnik Matematicki Home Page