Glasnik Matematicki, Vol. 49, No. 1 (2014), 105-111.
FINITE GROUPS HAVING AT MOST 27 NON-NORMAL PROPER SUBGROUPS OF
NON-PRIME-POWER ORDER
Jiangtao Shi and Cui Zhang
School of Mathematics and Information Science,
Yantai University, Yantai 264005,
China
e-mail: jiangtaoshi@126.com
Department of Applied Mathematics and Computer
Science,
Technical University of Denmark,
DK-2800 Lyngby,
Denmark
e-mail: cuizhang2008@gmail.com
Abstract.
We prove that any finite group having at most 27 non-normal proper
subgroups of non-prime-power order is solvable except for G≅
A5, the alternating group of degree 5.
2010 Mathematics Subject Classification.
20D10.
Key words and phrases. Finite group, solvable group, subgroup of non-prime-power order.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.1.08
References:
- J. H. Conway, R. T. Curtis, S. P. Norton, et al., Atlas of finite groups, Clarendon
Press, Oxford, 1985.
MathSciNet
- L. E. Dickson, Linear groups with an exposition of the Galois field
theory, Leipzig, Teubner, 1901.
- J. A. Gallian and D. Moulton, The classification of minimal non-prime-power order
groups, Arch. Math. (Basel) 59 (1992), 521-524.
MathSciNet
CrossRef
- G. Pazderski, Über maximale Untergruppen endlicher Gruppen,
Math. Nachr. 26 (1963/1964), 307-319.
MathSciNet
- D. J. S. Robinson, A course in the theory of groups,
Springer-Verlag, New York, 1996.
MathSciNet
CrossRef
- J. Shi and C. Zhang, Finite groups with given quantitative
non-nilpotent subgroups, Comm. Algebra 39 (2011), 3346-3355.
MathSciNet
CrossRef
- J. Shi and C. Zhang, Finite groups in which the number of classes of
non-nilpotent proper subgroups of the same order is given, Chinese Ann. Math. Ser. A 32 (2011), 687-692 (in Chinese).
MathSciNet
- J. Shi, C. Zhang and D. Liang, Finite groups with some
subgroups of given order, Algebra Colloq. 20 (2013), 457-462.
MathSciNet
CrossRef
- M. Suzuki, On a class of doubly transitive groups, Ann. of Math. (2) 75 (1962), 105-145.
MathSciNet
CrossRef
- J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are
solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437.
MathSciNet
CrossRef
Glasnik Matematicki Home Page