Glasnik Matematicki, Vol. 49, No. 1 (2014), 53-81.
ROOT SUPERMULTIPLICITIES AND CORRESPONDING COMBINATORIAL
IDENTITIES FOR SOME BORCHERDS SUPERALGEBRAS
Neelacanta Sthanumoorthy and Kandasamy Priyadharsini
The Ramanujan Institute for Advanced study in Mathematics,
University of Madras,
Chennai - 600 005,
India
e-mail: sthanun@yahoo.com
The Ramanujan Institute for Advanced study in Mathematics,
University of Madras, Chennai - 600 005,
India
e-mail: priyariasm@gmail.com
Abstract.
In this paper, root supermultiplicities and corresponding combinatorial identities for the Borcherds superalgebras which are extensions of A2 and A3 are found out. Moreover, superdimension formula for a Borcherds superalgebra which is an extension of a particular hyperbolic Kac-Moody algebra is also computed.
2010 Mathematics Subject Classification.
17B65, 17B67.
Key words and phrases. Borcherds superalgebras, colored superalgebras, root supermultiplicities.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.1.06
References:
- R. E. Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1988), 501-512.
MathSciNet
CrossRef
- R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444.
MathSciNet
CrossRef
- A. J. Feingold and I. B. Frenkel, A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2, Math. Ann. 263 (1983), 87-144.
MathSciNet
CrossRef
- I. B. Frenkel and V. G. Kac, Basic representation of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980), 23-66.
MathSciNet
CrossRef
- J. Hontz and K.C. Misra, Root multiplicities of the indefinite Kac-Moody Lie algebras HD4(3) and HG2(1), Comm. Algebra 30 (2002), 2941-2959.
MathSciNet
CrossRef
- V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), 8-96.
MathSciNet
CrossRef
- V. G. Kac, Infinite dimensional algebras, Dedekind's η- function, classical Mobius function and the very strange
formula, Adv. in Math. 30 (1978), 85-136.
MathSciNet
CrossRef
- V.G. Kac, Infinite dimensional Lie algebras, 3rd ed. Cambridge University Press., Cambridge, 1990.
MathSciNet
CrossRef
- V. G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, in: Lie theory and geometry, Birkhäuser Boston, Boston, 1994, 415-456.
MathSciNet
- S.-J. Kang, Kac-Moody Lie algebras, spectral sequences, and the Witt
formula, Trans. Amer. Math. Soc. 339 (1993), 463-493.
MathSciNet
CrossRef
- S. J. Kang, Root multiplicities of the hyperbolic Kac-Moody Lie algebra
HA1(1), J. Algebra 160 (1993), 492-523.
MathSciNet
CrossRef
- S. J. Kang, Generalized Kac-Moody algebras and the modular function j, Math. Ann. 298 (1994), 373-384.
MathSciNet
CrossRef
- S. J. Kang, Root multiplicities of Kac-Moody algebras, Duke
Math. J. 74 (1994), 635-666.
MathSciNet
CrossRef
- S. J. Kang, On the hyperbolic Kac-Moody Lie algebra HA1(1), Trans. Amer.
Math. Soc. 341 (1994), 623-638.
MathSciNet
CrossRef
- S. J. Kang, Root multiplicities of graded Lie algebras, in Lie algebras and Their
Representations, S. J. Kang, M. H. Kim, I. S. Lee (eds), Amer. Math. Soc., Providence, 1996, 161-176.
MathSciNet
CrossRef
- S. J. Kang, Graded Lie superalgebras and the superdimension formula, J. Algebra 204 (1998), 597-655.
MathSciNet
CrossRef
- S. J. Kang and M. H. Kim, Borcherds superalgebras and a monstrous Lie superalgebras, Math. Ann. 307 (1997), 677-694.
MathSciNet
CrossRef
- S. J. Kang and M. H. Kim, Dimension formula for graded Lie algebras and its applications, Trans. Amer. Math. Soc. 351 (1999), 4281-4336.
MathSciNet
CrossRef
- S. J. Kang and D. J. Melville, Root multiplicities of the Kac-Moody algebras HAn(1), J.
Algebra 170 (1994), 277-299.
MathSciNet
CrossRef
- S. Kass, R. V. Moody, J. Patera and R. Slansky, Affine Lie algebras, weight multiplicities and branching rules. 1, University of California Press, Berkeley, 1990.
MathSciNet
- K. Kim and D. U. Shin, The recursive dimension formula for graded Lie algebras and its applications, Comm. Algebra 27 (1999), 2627-2652.
MathSciNet
CrossRef
- L. S. Liu,Kostant's formula for Kac-Moody Lie superalgebras, J. Algebra 149 (1992),
155-178.
MathSciNet
CrossRef
- M. Miyamoto, A generalization of Borcherds algebra and denominator formula, J. Algebra 180 (1996), 631-651.
MathSciNet
CrossRef
- M. Scheunert, The theory of Lie superalgebras. An introduction, Springer, Berlin, 1979.
MathSciNet
- N. Sthanumoorthy and A. Uma Maheswari, Purely imaginary roots of Kac-Moody algebras, Comm. Algebra 24 (1996), 677-693.
MathSciNet
CrossRef
- N. Sthanumoorthy and A. Uma Maheswari, Root multiplicities of extended-hyperbolic Kac-Moody algebras, Comm. Algebra 24 (1996), 4495-4512.
MathSciNet
CrossRef
- N. Sthanumoorthy and P. L. Lilly, On the root systems of generalized Kac-Moody algebras, The Journal of Madras University, Section B Sciences 52 (2000), 81-102.
- N. Sthanumoorthy and P. L. Lilly, Special imaginary roots of generalized Kac-Moody algebras, Comm. Algebra 10 (2002), 4771-4787.
MathSciNet
CrossRef
- N. Sthanumoorthy and P. L. Lilly, A note on purely imaginary roots of generalized Kac-Moody algebras, Comm. Algebra 31 (2003), 5467-5479.
MathSciNet
CrossRef
- N. Sthanumoorthy and P. L. Lilly, On some classes of root systems of generalized Kac-Moody algebras, in Kac-Moody Lie algebras and related topics, 2004, 289-313.
MathSciNet
CrossRef
- N. Sthanumoorthy, P. L. Lilly and A. Uma Maheswari, Root multiplicities of some classes of extended hyperbolic Kac-Moody and extended hyperbolic generalized Kac-Moody algebras, in Kac-Moody Lie algebras and related topics, 2004, 315-347.
MathSciNet
CrossRef
- N. Sthanumoorthy, P. L. Lilly and A. Uma Maheswari, Extended hyperbolic Kac-Moody algebras EHA2(2) structure and root multiplicities, Comm. Algebra 32 (2004), 2457-2476.
MathSciNet
CrossRef
- N. Sthanumoorthy and P. L. Lilly, Complete classifications of generalized Kac-Moody algebras possessing special imaginary roots and strictly imaginary property, Comm. Algebra 35 (2007), 2450-2471.
MathSciNet
CrossRef
- N. Sthanumoorthy and P. L. Lilly, Root multiplicities of some generalized Kac-Moody algebras, Indian J. Pure Appl. Math. 38 (2007), 55-78.
MathSciNet
- N. Sthanumoorthy, P. L. Lilly and A. Nazeer Basha, Special imaginary roots of BKM Lie super algebras, Int. J. Pure Appl. Math. 38 (2007), 513-542.
MathSciNet
- N. Sthanumoorthy, P. L. Lilly and A. Nazeer Basha, Root supermultiplicities of some Borcherds superalgebras, Comm. Algebra 37 (2009), 1353-1388.
MathSciNet
CrossRef
- N. Sthanumoorthy, P. L. Lilly and A. Nazeer Basha, Strictly imaginary roots and purely imaginary roots of BKM Lie superalgebras, Comm. Algebra 37 (2009), 2357-2390.
MathSciNet
CrossRef
- N. Sthanumoorthy and K. Priyadharsini, Complete classification of BKM Lie superalgebras possessing special imaginary roots, Applied Mathematics 2(4) (2012), 100-115.
- N. Sthanumoorthy and K. Priyadharsini, Complete classification of BKM Lie superalgebras possessing special imaginary roots, Comm. Algebra 41 (2013), 367-400.
MathSciNet
CrossRef
Glasnik Matematicki Home Page