Glasnik Matematicki, Vol. 49, No. 1 (2014), 47-51.
IDEALIZATION AND POLYNOMIAL IDENTITIES
Malik Bataineh and D. D. Anderson
Department of Mathematics and Statistics, Jordan University of
Science and Technology, Irbid 22110, Jordan
e-mail: msbataineh@just.edu.jo
Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USA
e-mail: dan-anderson@uiowa.edu
Abstract.
Let R be a commutative ring, let M be an R-module, let f(X1, …,Xn) be a polynomial (with coefficients from R or Z) and let k be a positive
integer. We show that if R satisfies the polynomial identity
∏i=1kf(X1i, …,Xni)=0,
then the idealization R(+)M satisfies
∏i=1k+1f(X1i, …,Xni)=0.
2010 Mathematics Subject Classification.
13B25.
Key words and phrases. Idealization, trivial extension, polynomial identity.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.1.05
References:
- D. D. Anderson, Generalizations of Boolean rings,
Boolean-like rings and von Neumann regular rings, Comment. Math. Univ. St.
Paul. 35 (1986), 69-76.
MathSciNet
- D. D. Anderson and M. Winders, Idealization of a module, J.
Commut. Algebra 1 (2009), 3-56.
MathSciNet
CrossRef
- A. L. Foster, The idempotent elements of a commutative ring
form a Boolean algebra; ring duality and transformation theory, Duke Math.
J. 12 (1945), 143-152.
MathSciNet
CrossRef
- A. L. Foster, The theory of Boolean-like rings, Trans. Amer.
Math. Soc. 59 (1946), 166-187.
MathSciNet
CrossRef
Glasnik Matematicki Home Page