Glasnik Matematicki, Vol. 49, No. 1 (2014), 37-46.
ON D(W)-QUADRUPLES IN THE RINGS OF INTEGERS OF CERTAIN PURE NUMBER FIELDS
Ljerka Jukić Matić
Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, 31 000 Osijek, Croatia
e-mail: ljukic@mathos.hr
Abstract.
The purpose of this paper is to show the non-existence
of D(w)-quadruples in number fields of odd degree whose rings of
integers are of the special form. We derive some elements which
can not be represented as difference of squares in such rings and
comment the non-existence of corresponding Diophantine quadruples.
This relies on the non-solvability of system of congruences which
we prove in some low-degree cases.
2010 Mathematics Subject Classification.
11D09, 11R16, 11D79.
Key words and phrases. Diophantine quadruples, pure number fields, cyclic
bases.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.1.04
References:
-
E. Brown, Sets in which xy+k is always a square, Math. Comp. 45 (1985), 613-620.
MathSciNet
CrossRef
-
R. Dedekind, Ueber die Anzahl der Idealklassen in reinen kubischen Zahlkörpern, J. Reine Angew. Math. 121 (1900), 40-123.
-
A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15-27.
MathSciNet
-
A. Dujella, The problem of Diophantus and Davenport for Gaussian integers, Glas. Mat. Ser. III 32 (1997), 1-10.
MathSciNet
-
A. Dujella and Z. Franušić, On differences of two squares in some quadratic fields, Rocky Mountain J. Math. 37 (2007), 429-453.
MathSciNet
CrossRef
-
A. Dujella and C. Fuchs, A polynomial variant of a problem of Diophantus and Euler, Rocky Mountain J. Math. 33 (2003), 797-811
MathSciNet
CrossRef
-
A. Dujella, C. Fuchs and F. Luca, A polynomial variant of a problem of Diophantus for pure powers, Int. J. Number Theory 4 (2008), 57-71.
MathSciNet
CrossRef
-
A. Dujella and I. Soldo, Diophantine quadruples in Z[√-2], An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 18 (2010), 81-97.
MathSciNet
-
Z. Franušić, A Diophantine problem in Z[(1+√d)/2], Studia Sci. Math. Hungar. 46 (2009), 103-112.
MathSciNet
CrossRef
-
Z. Franušić, Diophantine quadruples in Z[√(4k+3)], Ramanujan J. 17 (2008), 77-88.
MathSciNet
CrossRef
-
Z. Franušić, Diophantine quadruples in the ring Z[√ 2], Math. Commun. 9 (2004), 141-148.
MathSciNet
-
Lj. Jukić Matić, Non-existence of certain Diophantine quadruples in rings of integers of pure cubic fields, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), 163-167.
MathSciNet
CrossRef
-
H. Gupta and K. Singh, On k-triad sequences, Internat. J. Math. Math. Sci. 8 (1995), 799-804.
MathSciNet
CrossRef
-
M. J. Lavallee, B. K. Spearman, K. S. Williams and Q. Yang, Dihedral quintic fields with a power basis, Math. J. Okayama Univ. 47 (2005), 75-79.
MathSciNet
-
S. P. Mohanty and A. M. S. Ramasamy, On Pr,k sequences, Fibonacci Quart. 23 (1985), 36-44.
MathSciNet
-
A. Muriefah and A. Al-Rashed, Some Diophantine quadruples in the ring Z[√-2], Math. Commun. 9 (2004), 1-8.
MathSciNet
-
I. Soldo, On the existence of Diophantine quadruples in Z[√-2], Miskolc Math. Notes 14 (2013), 265-277.
MathSciNet
Glasnik Matematicki Home Page