Glasnik Matematicki, Vol. 49, No. 1 (2014), 25-36.
THE EXTENDIBILITY OF DIOPHANTINE PAIRS I: THE GENERAL CASE
Alan Filipin, Yasutsugu Fujita and Alain Togbé
Faculty of Civil Engineering, University of Zagreb, Fra Andrije Kačića-Miošića 26, 10000 Zagreb, Croatia
e-mail: filipin@master.grad.hr
Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
e-mail: fujita.yasutsugu@nihon-u.ac.jp
Mathematics Department, Purdue University North Central, 1401 S, U.S. 421, Westville, IN 46391, USA
e-mail: atogbe@pnc.edu
Abstract.
Let a and b be positive integers with a<b , such that ab+1 is a perfect square. In this paper
we give an upper bound for the minimal positive integer c such that {a,b,c,d} is the set of positive integers which has the property that the product of any two of its elements increased by 1 is a perfect square and d≠ a+b+c+2(abc±√((ab+1)(ac+1)(bc+1))).
2010 Mathematics Subject Classification.
11D09, 11J68.
Key words and phrases. Diophantine tuples, simultaneous Diophantine equations.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.1.03
References:
-
J. Arkin, V. E. Hoggatt and E. G. Straus,
On Euler's solution of a problem of Diophantus,
Fibonacci Quart. 17 (1979), 333-339.
MathSciNet
- A. Baker and H. Davenport,
The equations 3x2-2=y2 and 8x2-7=z2,
Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
MathSciNet
CrossRef
-
Y. Bugeaud, A. Dujella and M. Mignotte,
On the family of Diophantine triples {k-1,k+1,16k3-4k},
Glasgow Math. J. 49 (2007), 333-344.
MathSciNet
CrossRef
-
A. Dujella, Diophantine m-tuples,
http://web.math.pmf.unizg.hr/ duje/dtuples.html.
-
A. Dujella,
An absolute bound for the size of Diophantine m-tuples,
J. Number Theory 89 (2001), 126-156.
MathSciNet
CrossRef
-
A. Dujella,
There are only finitely many Diophantine quintuples,
J. Reine Angew. Math. 566 (2004) 183-214.
MathSciNet
CrossRef
-
A. Dujella and A. Pethö,
A generalization of a theorem of Baker and Davenport,
Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
MathSciNet
CrossRef
-
A. Filipin and Y. Fujita,
The number of Diophantine quintuples II,
Publ. Math. Debrecen, 82 (2013), 293-308.
MathSciNet
CrossRef
-
Y. Fujita,
The extensibility of Diophantine pairs {k-1,k+1},
J. Number Theory 128 (2008), 322-353.
MathSciNet
CrossRef
-
Y. Fujita,
Any Diophantine quintuple contains a regular Diophantine quadruple,
J. Number Theory 129 (2009), 1678-1697.
MathSciNet
CrossRef
- B. W. Jones, A second variation on a problem of Diophantus and Davenport, Fibonacci Quart. 16 (1978) 155-165.
MathSciNet
Glasnik Matematicki Home Page