Glasnik Matematicki, Vol. 49, No. 1 (2014), 13-23.

REGULAR OPEN ARITHMETIC PROGRESSIONS IN CONNECTED TOPOLOGICAL SPACES ON THE SET OF POSITIVE INTEGERS

Paulina Szczuka

Department of Mathematics, Kazimierz Wielki University, pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland
e-mail: paulinaszczuka@wp.pl


Abstract.   In this paper we characterize regular open arithmetic progressions in four connected topological spaces on the set of positive integers with bases consisting of some arithmetic progressions and we examine which of these spaces are semiregular.

2010 Mathematics Subject Classification.   11B25, 54A05, 11A41.

Key words and phrases.   Furstenberg's topology, Golomb's topology, Kirch's topology, the division topology, arithmetic progressions, regular open set, semiregular space.


Full text (PDF) (free access)

DOI: 10.3336/gm.49.1.02


References:

  1. M. Brown, A countable connected Hausdorff space, Bull. Amer. Math. Soc. 59 (1953), 367.

  2. H. Furstenberg, On the infinitude of primes, Amer. Math. Monthly 62 (1955), 353.
    MathSciNet     CrossRef

  3. S. W. Golomb, A connected topology for the integers, Amer. Math. Monthly 66 (1959), 663-665.
    MathSciNet     CrossRef

  4. J. L. Kelley, General topology, Springer-Verlag, New York-Berlin, 1975.
    MathSciNet    

  5. A. M. Kirch, A countable, connected, locally connected Hausdorff space, Amer. Math. Monthly 76 (1969), 169-171.
    MathSciNet     CrossRef

  6. W. J. LeVeque, Topics in number theory, Vol. I, II, Dover Publications Inc., New York, 2002.
    MathSciNet    

  7. G. B. Rizza, A topology for the set of nonnegative integers, Riv. Mat. Univ. Parma (5) 2 (1993), 179-185.
    MathSciNet    

  8. L. A. Steen, J. A. Seebach, Jr., Counterexamples in topology, Springer-Verlag, New York 1978.
    MathSciNet    

  9. P. Szczuka, The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies, Demonstratio Math. 43 (2010), 899-909.
    MathSciNet    

  10. P. Szczuka, Connections between connected topological spaces on the set of positive integers, Cent. Eur. J. Math. 11 (2013), 876-881.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page