Glasnik Matematicki, Vol. 49, No. 1 (2014), 13-23.
REGULAR OPEN ARITHMETIC PROGRESSIONS IN CONNECTED TOPOLOGICAL SPACES ON THE SET OF POSITIVE INTEGERS
Paulina Szczuka
Department of Mathematics, Kazimierz Wielki University, pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland
e-mail: paulinaszczuka@wp.pl
Abstract.
In this paper we characterize regular open arithmetic progressions in four connected topological spaces on the set of positive integers with bases consisting of some arithmetic progressions
and we examine which of these spaces are semiregular.
2010 Mathematics Subject Classification.
11B25, 54A05, 11A41.
Key words and phrases. Furstenberg's topology, Golomb's topology, Kirch's topology, the division topology,
arithmetic progressions, regular open set, semiregular space.
Full text (PDF) (free access)
DOI: 10.3336/gm.49.1.02
References:
-
M. Brown, A countable connected Hausdorff space, Bull.
Amer. Math. Soc. 59 (1953), 367.
-
H. Furstenberg, On the infinitude of primes, Amer. Math.
Monthly 62 (1955), 353.
MathSciNet
CrossRef
-
S. W. Golomb, A connected topology for the integers, Amer.
Math. Monthly 66 (1959), 663-665.
MathSciNet
CrossRef
-
J. L. Kelley, General topology, Springer-Verlag, New York-Berlin, 1975.
MathSciNet
-
A. M. Kirch, A countable, connected, locally connected
Hausdorff space, Amer. Math. Monthly 76 (1969), 169-171.
MathSciNet
CrossRef
-
W. J. LeVeque, Topics in number theory, Vol. I, II,
Dover Publications Inc., New York, 2002.
MathSciNet
-
G. B. Rizza, A topology for the set of nonnegative integers,
Riv. Mat. Univ. Parma (5) 2 (1993), 179-185.
MathSciNet
-
L. A. Steen, J. A. Seebach, Jr., Counterexamples in topology,
Springer-Verlag, New York 1978.
MathSciNet
-
P. Szczuka, The connectedness of arithmetic progressions in
Furstenberg's, Golomb's, and Kirch's topologies, Demonstratio Math.
43 (2010), 899-909.
MathSciNet
-
P. Szczuka, Connections between connected topological spaces on
the set of positive integers, Cent. Eur. J. Math. 11 (2013),
876-881.
MathSciNet
CrossRef
Glasnik Matematicki Home Page