Glasnik Matematicki, Vol. 48, No. 2 (2013), 415-428.
SURFACES OF REVOLUTION IN THE THREE DIMENSIONAL PSEUDO-GALILEAN SPACE
Dae Won Yoon
Department of Mathematics Education and
RINS, Gyeongsang National University, Jinju 660-701, South
Korea
e-mail: dwyoon@gnu.ac.kr
Abstract. In the present paper, we study surfaces of revolution
in the three dimensional pseudo-Galilean space G31 . Also, we
characterize surfaces of revolution in G31 in terms of the
position vector field and Gauss map.
2010 Mathematics Subject Classification.
53A35, 53B30.
Key words and phrases. Pseudo-Galilean space, surface of revolution, Gauss map.
Full text (PDF) (free access)
DOI: 10.3336/gm.48.2.13
References:
- L. J. Alías, A. Ferrández and P. Lucas,
Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying Δ x = A x + B,
Pacific J. Math. 156 (1992), 201-208.
MathSciNet
CrossRef
- L. J. Alías, A. Ferrández, P. Lucas and M.
A. Meroño,
On the Gauss map of B-scrolls,
Tsukuba J. Math. 22 (1998), 371-377.
MathSciNet
- C. Baikoussis and D. E. Blair,
On the Gauss map of ruled surfaces,
Glasgow Math. J. 34 (1992), 355-359.
MathSciNet
CrossRef
- C. Baikoussis and L. Verstraelen,
On the Gauss map of helicoidal surfaces,
Rend. Sem. Math. Messina Ser. II 2(16) (1993), 31-42.
MathSciNet
- C. Baikoussis and L. Verstraelen,
The Chen-type of the spiral surfaces,
Results Math. 28 (1995), 214-223.
MathSciNet
CrossRef
- B.- Y. Chen,
A report on submanifold of finite type,
Soochow J. Math.
22 (1996), 117-337.
MathSciNet
- S. M. Choi,
On the Gauss map of surfaces of
revolution in a 3-dimensional Minkowski space,
Tsukuba J. Math.
19 (1995), 351-367.
MathSciNet
- S. M. Choi,
On the Gauss map of ruled
surfaces in a 3-dimensional Minkowski space,
Tsukuba J. Math.
19 (1995), 285-304.
MathSciNet
- F. Dillen, J. Pas and L. Vertraelen,
On surfaces of finite type in Euclidean 3-space,
Kodai Math. J. 13 (1990), 10-21.
MathSciNet
CrossRef
- F. Dillen, J. Pas and L. Vertraelen,
On the Gauss map of surfaces of revolution,
Bull. Inst. Math. Acad. Sinica 18 (1990), 239-246.
MathSciNet
- B. Divjak and Ž. Milin Šipuš,
Some special surface in the pseudo-Galilean space,
Acta Math. Hungar. 118 (2008), 209-226.
MathSciNet
CrossRef
- O. J. Garay,
An extension of Takahashi's theorem,
Geom. Dedicata 34 (1990), 105-112.
MathSciNet
CrossRef
- Ž. Milin Šipuš,
Ruled Weingarten surfaces in the Galilean
space, Period. Math. Hungar. 56 (2008), 213-225.
MathSciNet
CrossRef
- Ž. Milin Šipuš and B. Divjak,
Surfaces of constant curvature in the pseudo-Galilean space,
Int. J. Math. Math. Sci. 2012, 1-28.
MathSciNet
CrossRef
- Ž. Milin Šipuš and B. Divjak,
Translation surface in the Galilean space,
Glas. Mat. Ser. III 46(66) (2011), 455-469.
MathSciNet
CrossRef
- T. Takahashi,
Minimal immersions of Riemannian manifolds,
J. Math. Soc. Japan 18 (1966), 380-385.
MathSciNet
CrossRef
- D. W. Yoon,
On the Gauss map of translation surfaces in Minkowski
3-space,
Taiwanese J. Math.
6 (2002), 389-398.
MathSciNet
- D. W. Yoon,
Some classification of translation surfaces in Galilean 3-space,
Int. J. Math. Anal. (Ruse) 6 (2012), 1355-1361.
MathSciNet
Glasnik Matematicki Home Page