Glasnik Matematicki, Vol. 48, No. 2 (2013), 373-390.
OPTIMAL DAMPING OF THE INFINITE-DIMENSIONAL VIBRATIONAL SYSTEMS: COMMUTATIVE CASE
Ivica Nakić
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: nakic@math.hr
Abstract. In this paper we treat the case of an abstract vibrational system of the form Mx″+Cx′+x=0,
where the positive semi-definite selfadjoint operators M and C commute. We explicitly calculate the
solution of the corresponding Lyapunov equation which enables us to obtain the set of optimal damping operators, thus
extending already known results in the matrix case.
2010 Mathematics Subject Classification.
34G10, 70J99, 47D06.
Key words and phrases. Vibrational systems, damping, Lyapunov equation.
Full text (PDF) (free access)
DOI: 10.3336/gm.48.2.10
References:
-
N. I. Akhiezer and I. M. Glazman,
Theory of linear operators in Hilbert space,
Dover Publications Inc., New York, 1993.
MathSciNet
-
P. Benner, Z. Tomljanović and N. Truhar,
Dimension reduction for damping optimization in linear vibrating
systems,
Z. Angew. Math. Mech 91 (2011), 179-191.
MathSciNet
CrossRef
-
G. Chen and J. Zhou,
Vibration and damping in distributed systems, Vol. I,
CRC Press, Boca Raton, 1993.
MathSciNet
-
S. P. Chen and R. Triggiani,
Proof of extensions of two conjectures on structural damping for
elastic systems,
Pacific J. Math. 136 (1989), 15-55.
MathSciNet
CrossRef
-
S. J. Cox, I. Nakić, A. Rittmann and K. Veselić,
Lyapunov optimization of a damped system,
Systems Control Lett. 53 (2004), 187-194.
MathSciNet
CrossRef
-
S. J. Cox,
Designing for optimal energy absorption. II. The damped wave
equation,
in Control and estimation of distributed parameter systems
(Vorau, 1996), Birkhäuser, Basel, 1998, 103-109.
MathSciNet
-
S. J. Cox,
Designing for optimal energy absorption, I: Lumped parameter
systems,
ASME J. Vibration and Acoustics 120 (1998), 339-345.
CrossRef
-
R. Datko,
Extending a theorem of A. M. Liapunov to Hilbert space,
J. Math. Anal. Appl. 32 (1970), 610-616.
MathSciNet
CrossRef
-
K.-J. Engel and R. Nagel,
One-parameter semigroups for linear evolution equations,
Springer-Verlag, New York, 2000.
MathSciNet
-
M. O. González,
Classical complex analysis,
Marcel Dekker Inc., New York, 1992.
MathSciNet
-
E. Hille and R. S. Phillips,
Functional analysis and semi-groups,
American Mathematical Society, Providence, 1957.
MathSciNet
-
F. L. Huang,
On the mathematical model for linear elastic systems with analytic
damping,
SIAM J. Control Optim. 26 (1988), 714-724.
MathSciNet
CrossRef
-
T. Kato,
Perturbation theory for linear operators,
Springer-Verlag, Berlin, 1995.
MathSciNet
-
A. N. Kolmogorov and S. V. Fomin,
Introductory real analysis,
Dover Publications Inc., New York, 1975.
MathSciNet
-
P. Lancaster,
Lambda-matrices and vibrating systems,
%International series of monographs in pure and applied mathematics.
Pergamon Press, 1966.
MathSciNet
-
A. Pazy,
Semigroups of linear operators and applications to partial
differential equations,
Springer-Verlag, New York, 1983.
MathSciNet
CrossRef
-
V. Q. Phóng,
The operator equation AX-XB=C with unbounded operators
A and B and related abstract Cauchy problems,
Math. Z. 208 (1991), 567-588.
MathSciNet
CrossRef
-
N. Truhar and K. Veselić,
An efficient method for estimating the optimal dampers' viscosity for
linear vibrating systems using Lyapunov equation,
SIAM J. Matrix Anal. Appl. 31 (2009), 18-39.
MathSciNet
CrossRef
-
N. Truhar,
An efficient algorithm for damper optimization for linear vibrating
systems using lyapunov equation,
J. Comput. Appl. Math. 172 (2004), 169-182.
MathSciNet
CrossRef
-
T. Veijola,
Analytic damping model for an mem perforation cell,
Microfluidics and Nanofluidics 2 (2006), 249-260.
CrossRef
-
K. Veselić,
Damped oscillations of linear systems: a mathematical
introduction,
Springer, Heidelberg, 2011.
MathSciNet
CrossRef
-
K. Veselić, K. Brabender and K. Delinić,
Passive control of linear systems,
in Applied mathematics and computation (eds. M. Rogina et al.),
Dept. of Math, University of Zagreb, Zagreb, 2001, 39-68.
Glasnik Matematicki Home Page