Glasnik Matematicki, Vol. 48, No. 2 (2013), 301-312.
BIRATIONAL MAPS OF X(1) INTO P2
Damir Mikoč and Goran Muić
Department of Mathematics,
University of Rijeka,
Omladinska 14, HR-51000 Rijeka, Croatia
e-mail: damir.mikoc@gmail.com
Department of Mathematics,
University of Zagreb,
Bijenička 30, 10000 Zagreb,
Croatia
e-mail: gmuic@math.hr
Abstract. In this paper we study birational maps of modular curve X(1) attached to SL2(Z) into the projective plain
P2. We prove that every curve of genus 0 and degree q in P2
can be uniformized by modular forms for SL2(Z) of weight 12q but not with modular forms of
smaller weight, and that the corresponding uniformization can be chosen to be a birational equivalence.
We study other regular maps X(1) → P2 and we compute the equation
of obtained projective curve. We provide numerical examples in SAGE.
2010 Mathematics Subject Classification.
14H50, 11F11, 11F23.
Key words and phrases. Modular forms, modular curves, birational equivalence.
Full text (PDF) (free access)
DOI: 10.3336/gm.48.2.06
References:
- R. Bröker, K. Lauter and A. V. Sutherland, Modular polynomials via isogeny volcanoes,
Mathematics of Computation 81 (2012), 1201-1231.
MathSciNet
CrossRef
- L. A. Borisov, P. E. Gunnells and S. Popescu, Elliptic functions and equations of modular curves,
Math. Ann. 321 (2001), 553-568.
MathSciNet
CrossRef
- B. Cho, N. M. Kim and J. K. Koo,
Affine models of the modular curves X(p) and its application,
Ramanujan J. 24 (2011), 235-257.
MathSciNet
CrossRef
-
H. M. Farkas and I. Kra, Theta constants, Riemann surfaces and the modular group,
Amer. Math. Soc., Providence, 2001.
MathSciNet
-
H. M. Farkas, Y. Kopeliovich and I. Kra, Uniformizations of modular curves,
Comm. Anal. Geom. 4 (1996), 207-259.
Corrigendum to: "Uniformizations of modular curves'',
Comm. Anal. Geom. 4 (1996), 681.
MathSciNet
-
S. Galbraith, Equations for modular curves, Ph.D. thesis, Oxford, 1996.
- R. Brooks and Y. Kopeliovich, Uniformization of some quotients of modular curves, in:
Extremal Riemann surfaces
(San Francisco, CA, 1995), Amer. Math. Soc., Providence, 1997, 155-164.
MathSciNet
CrossRef
-
T. Miyake, Modular forms, Springer-Verlag, 2006.
MathSciNet
- R. Miranda, Algebraic curves and Riemann surfaces,
American Mathematical Society, Providence, 1995.
MathSciNet
- G. Muić,
Modular curves and bases for the spaces of cuspidal modular forms,
Ramanujan J. 27 (2012), 181-208.
MathSciNet
CrossRef
- G. Muić,
Integral models of X0(N) and their degrees, preprint, http://lanl.arxiv.org/abs/1305.2428.
- I. R. Shafarevich, Basic algebraic geometry. 2. Schemes and complex manifolds, Springer-Verlag, 1994.
MathSciNet
- G. Shimura, Introduction to the arithmetic theory of automorphic functions. Kanô Memorial Lectures,
No. 1. Iwanami Shoten, Publishers, Tokyo; Princeton University Press,
Princeton, 1971.
MathSciNet
- M. Shimura, Defining equations of modular curves X0(N),
Tokyo J. Math. 18 (1995), 443-456.
MathSciNet
CrossRef
- W. Stein, Modular forms, a computational approach, American Mathematical Society, 2007.
MathSciNet
- Y. Yifan, Defining equations of modular curves, Adv. Math. 204 (2006), 481-508.
MathSciNet
CrossRef
Glasnik Matematicki Home Page