Glasnik Matematicki, Vol. 48, No. 2 (2013), 249-263.
THE ARAKAWA-KANEKO ZETA FUNCTION AND POLY-BERNOULLI POLYNOMIALS
Yoshinori Hamahata
Institute for Teaching and Learning,
Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577,
Japan
e-mail: hamahata@fc.ritsumei.ac.jp
Abstract. The purpose of this paper is to
introduce a generalization of the Arakawa-Kaneko
zeta function and investigate their special
values at negative integers.
The special values are written as
the sums of products of
Bernoulli and poly-Bernoulli polynomials.
We establish the basic properties for this zeta
function and their special values.
2010 Mathematics Subject Classification.
11B68, 11M32.
Key words and phrases. Arakawa-Kaneko zeta function,
Bernoulli numbers and polynomials,
poly-Bernoulli numbers and polynomials.
Full text (PDF) (free access)
DOI: 10.3336/gm.48.2.03
References:
- T. Arakawa and M. Kaneko,
Multiple zeta values, poly-Bernoulli
numbers, and related zeta functions,
Nagoya Math. J. 153 (1999), 189-209.
MathSciNet
CrossRef
- T. Arakawa and M. Kaneko,
On poly-Bernoulli numbers,
Comment. Math. Univ. St. Paul. 48 (1999), 159-167.
MathSciNet
- A. Bayad and Y. Hamahata,
Polylogarithms and poly-Bernoulli polynomials,
Kyushu J. Math. 65 (2011), 15-24.
MathSciNet
CrossRef
- K.-W. Chen,
Sums of products of generalized Bernoulli polynomials, Pacific J. Math. 208 (2003), 39-52.
MathSciNet
CrossRef
- M.-A. Coppo and B. Candelpergher,
The Arakawa-Kaneko zeta function,
Ramanujan J. 22 (2010), 153-162.
MathSciNet
CrossRef
-
K. Dilcher,
Sums of products of Bernoulli numbers,
J. Number Theory 60 (1996), 23-41.
MathSciNet
CrossRef
-
K. Kamano,
Sums of products of Bernoulli numbers, including
poly-Bernoulli numbers,
J. Integer Seq. 13 (2010), Article 10.5.2.
MathSciNet
-
M. Kaneko,
Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux 9 (1997),
221-228.
CrossRef
Glasnik Matematicki Home Page