Glasnik Matematicki, Vol. 48, No. 1 (2013), 173-183.
ON IDENTIFYING HYPERBOLIC 3-MANIFOLDS AS LINK COMPLEMENTS IN THE 3-SPHERE
Dubravko Ivanšić
Department of Mathematics and Statistics,
Murray State University,
Murray, KY 42071,
USA
e-mail: divansic@murraystate.edu
Abstract. We give a straightforward method that helps recognize when a noncompact hyperbolic 3-manifold
is a link complement in the 3-sphere and automatically produces the link diagram.
The method is based on converting a side-pairing to a handle decomposition.
2010 Mathematics Subject Classification.
57M50, 57M25.
Key words and phrases. Handle decomposition, hyperbolic manifold, link complement.
Full text (PDF) (free access)
DOI: 10.3336/gm.48.1.14
References:
-
S. Bleiler and C. Hodgson,
Spherical space forms and Dehn filling,
Topology 35 (1996), 809-833.
MathSciNet
CrossRef
-
P. J. Callahan, J. C. Dean and J. R. Weeks,
The simplest hyperbolic knots,
J. Knot Theory Ramifications 8 (1999), 279-297.
MathSciNet
CrossRef
-
P. J. Callahan and A. W. Reid,
Hyperbolic structures on knot complements,
Chaos Solitons Fractals 9 (1998), 705-738.
MathSciNet
CrossRef
-
G. K. Francis,
A topological picturebook,
Springer-Verlag, 1987.
MathSciNet
-
R. Gompf and A. Stipsicz,
4-manifolds and Kirby calculus,
AMS, Providence, 1999.
MathSciNet
-
D. Ivanšić, J. Ratcliffe and S. Tschantz,
Complements of tori and Klein bottles in the 4-sphere that have
hyperbolic structure,
Algebr. Geom. Topol. 5 (2005), 999-1026.
MathSciNet
CrossRef
-
D. Ivanšić,
A topological 4-sphere that is standard,
to appear in Adv. Geom.
-
D. Ivanšić,
Hyperbolic structure on a complement of tori in the 4-sphere,
Adv. Geom. 4 (2004), 119-139.
MathSciNet
CrossRef
-
R. Riley,
Discrete parabolic representations of link groups,
Mathematika 22 (1975), 141-150.
MathSciNet
CrossRef
-
R. Riley,
A quadratic parabolic group,
Math. Proc. Cambridge Philos. Soc. 77 (1975), 281-288.
MathSciNet
CrossRef
-
R. Riley,
Seven excellent knots,
in: Low-dimensional topology (Bangor, 1979), Cambridge Univ. Press,
Cambridge, 1982, 81-151.
MathSciNet
CrossRef
-
J. Ratcliffe and S. Tschantz,
The volume spectrum of hyperbolic 4-manifolds,
Experiment. Math. 9 (2000), 101-125.
MathSciNet
CrossRef
-
W. Thurston,
The geometry and topology of three-manifolds,
Princeton University lecture notes, 1979, 1982.
-
W. P. Thurston,
Three-dimensional geometry and topology. Vol. 1,
Princeton University Press, Princeton, 1997,
edited by Silvio Levy.
MathSciNet
-
J. Weeks,
Snappea: a computer program for creating and studying hyperbolic
3-manifolds,
available at http://www.geometrygames.org/SnapPea/.
-
N. Wielenberg,
The structure of certain subgroups of the Picard group,
Math. Proc. Cambridge Philos. Soc. 84 (1978), 427-436.
MathSciNet
CrossRef
Glasnik Matematicki Home Page