Glasnik Matematicki, Vol. 48, No. 1 (2013), 137-165.
WAŻEWSKI'S UNIVERSAL DENDRITE AS AN INVERSE LIMIT WITH ONE SET-VALUED BONDING FUNCTION
Iztok Banič, Matevž Črepnjak, Matej Merhar, Uroš Milutinović and Tina Sovič
Faculty of Natural Sciences and Mathematics,
University of Maribor,
Koroška 160, Maribor 2000, Slovenia,
and,
Institute of Mathematics, Physics and Mechanics,
Jadranska 19, Ljubljana 1000, Slovenia
e-mail: iztok.banic@uni-mb.si
Faculty of Natural Sciences and Mathematics,
University of Maribor,
Koroška 160, Maribor 2000, Slovenia,
and,
Faculty of Chemistry and Chemical Engineering, University of Maribor,
Smetanova 17, Maribor 2000, Slovenia
e-mail: matevz.crepnjak@um.si
Faculty of Natural Sciences and Mathematics,
University of Maribor,
Koroška 160, Maribor 2000, Slovenia
e-mail: matej.merhar@uni-mb.si
Faculty of Natural Sciences and Mathematics,
University of Maribor,
Koroška 160, Maribor 2000, Slovenia,
and,
Institute of Mathematics, Physics and Mechanics,
Jadranska 19, Ljubljana 1000, Slovenia
e-mail: uros.milutinovic@uni-mb.si
Faculty of Civil Engineering, University of Maribor,
Smetanova 17, Maribor 2000, Slovenia
e-mail: tina.sovic@um.si
Abstract. We construct a family of upper semi-continuous set-valued functions
f:[0,1] → 2[0,1]
(belonging to the class of so-called comb functions),
such that for each of them the inverse limit of the inverse sequence of
intervals [0,1] and f as the only
bonding function is homeomorphic to Ważewski's universal dendrite.
Among other results we also present a complete characterization of comb
functions
for which the inverse limits of the above type are dendrites.
2010 Mathematics Subject Classification.
54F50, 54C60.
Key words and phrases. Continua, inverse limits, upper semi-continuous functions, dendrites, Ważewski's universal dendrite.
Full text (PDF) (free access)
DOI: 10.3336/gm.48.1.12
References:
- I. Banič, On dimension of inverse limits with upper semicontinuous set-valued bonding functions, Topology Appl. 154 (2007), 2771-2778.
MathSciNet
CrossRef
- I. Banič, Inverse limits as limits with respect to the Hausdorff metric, Bull. Austral. Math. Soc. 75 (2007), 17-22.
MathSciNet
CrossRef
- I. Banič, Continua with kernels, Houston J. Math. 34 (2008), 145-163.
MathSciNet
- I. Banič, M. Črepnjak, M. Merhar and U. Milutinović, Limits of inverse limits, Topology Appl. 157 (2010), 439-450.
MathSciNet
CrossRef
- I. Banič, M. Črepnjak, M. Merhar and U. Milutinović, Paths through inverse limits, Topology Appl. 158 (2011), 1099-1112.
MathSciNet
CrossRef
- I. Banič, M. Črepnjak, M. Merhar and U. Milutinović, Towards the complete classification of generalized tent maps inverse limits, Topology Appl. 160 (2013), 63-73.
MathSciNet
CrossRef
- J. J. Charatonik, Monotone mappings of universal dendrites, Topology
Appl. 38 (1991), 163-187.
MathSciNet
CrossRef
- W. J. Charatonik and R. P. Roe, Inverse limits of continua having trivial shape, Houston J. Math. 38 (2012), 1307-1312.
- A. N. Cornelius, Weak crossovers and inverse limits of set-valued functions, preprint, 2009.
- J. Dugundji, Topology, Allyn and Bacon, Inc.,
Boston, 1966.
MathSciNet
- S. Greenwood and J. A. Kennedy, Generic generalized inverse limits, Houston J. Math. 38 (2012), 1369-1384.
MathSciNet
- A. Illanes, A circle is not the generalized inverse limit of a subset of [0, 1]2, Proc. Amer. Math. Soc. 139 (2011), 2987-2993.
MathSciNet
CrossRef
- A. Illanes, S. B. Nadler, Jr., Hyperspaces. Fundamentals and recent advances,
Marcel Dekker, Inc., New York, 1999.
MathSciNet
- W. T. Ingram, W. S. Mahavier, Inverse limits of upper semi-continuous set valued functions,
Houston J. Math. 32 (2006), 119-130.
MathSciNet
- W. T. Ingram, Inverse limits of upper semi-continuous functions that are unions of mappings, Topology Proc. 34 (2009), 17-26.
MathSciNet
- W. T. Ingram, Inverse limits with upper semi-continuous bonding functions: problems and some partial solutions, Topology Proc. 36 (2010), 353-373.
MathSciNet
- K. Kuratowski, Topology. Vol. 2, Academic Press, New York-London, Warsaw,
1968.
MathSciNet
- W. S. Mahavier, Inverse limits with subsets of [0,1] × [0,1],
Topology Appl. 141 (2004), 225-231.
MathSciNet
CrossRef
- J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, 1975.
MathSciNet
- S. B. Nadler, Continuum theory. An introduction, Marcel Dekker, Inc., New York, 1992.
MathSciNet
- V. Nall, Inverse limits with set valued functions, Houston J. Math. 37 (2011), 1323-1332.
MathSciNet
- V. Nall, Connected inverse limits with set-valued functions, Topology Proc. 40 (2012), 167-177.
MathSciNet
- V. Nall, Finite graphs that are inverse limits with a set valued function on [0, 1], Topology Appl. 158 (2011), 1226-1233.
MathSciNet
CrossRef
- A. Palaez, Generalized inverse limits, Houston J. Math. 32 (2006), 1107-1119.
MathSciNet
- S. Varagona, Inverse limits with upper semi-continuous bonding functions and indecomposability, Houston J. Math. 37 (2011), 1017-1034.
MathSciNet
- T. Ważewski, Sour les courbes de Jordan ne renfermant aucune courbe simple fermée de Jordan, Ann. Soc. Polon. Math. 2 (1923), 49-170.
Glasnik Matematicki Home Page