Glasnik Matematicki, Vol. 48, No. 1 (2013), 103-114.
STRONG SIZE PROPERTIES
Sergio Macías and César Piceno
Instituto de Matemáticas, Universidad
Nacional Autónoma de México,
Circuito Exterior, Ciudad Universitaria,
México D. F., C. P. 04510,
México
e-mail: sergiom@matem.unam.mx
e-mail: cesarpicman@hotmail.com
Abstract. We prove that countable aposyndesis, finite-aposyndesis, continuum chainability,
acyclicity (for n≥ 3), and acyclicity for locally connected continua
are strong size properties. As a consequence of our
results we obtain that arcwise connectedness is a strong size property which is
originally proved by Hosokawa.
2010 Mathematics Subject Classification.
54B20.
Key words and phrases. Absolute retract, acyclic continuum,
continuum, continuum chainable continuum, countable aposyndesis,
deformation retract, finite aposyndesis,
n-fold hyperspace, retract, retraction, strong size level, strong
size map, strong size properties.
Full text (PDF) (free access)
DOI: 10.3336/gm.48.1.10
References:
- K. Borsuk and S. Ulam, On symmetric products of topological
spaces, Bull. Amer. Math. Soc. 37 (1931), 875-882.
MathSciNet
CrossRef
- J. J. Charatonik and S. Macías, Mappings of some
hyperspaces, JP J. Geom. Topol. 4 (2004), 53-80.
MathSciNet
- C. H. Dowker, Mapping theorems for non-compact
spaces, Amer. J. Math. 69 (1947), 200-242.
MathSciNet
CrossRef
- T. Ganea, Symmetrische Potenzen topologischer Räume,
Math. Nachr. 11 (1954), 305-316.
MathSciNet
CrossRef
- H. Hosokawa, Strong size levels of Cn(X), Houston
J. Math. 37 (2011), 955-965.
MathSciNet
- A. Illanes, Multicoherence of Whitney levels, Topology
Appl. 68 (1996), 251-265.
MathSciNet
CrossRef
- A. Illanes, Countable closed set aposyndesis and
hyperspaces, Houston J. Math. 23 (1997), 57-64.
MathSciNet
- A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and recent advances, Marcel Dekker, New York, 1999.
MathSciNet
- S. Macías, On symmetric products of continua,
Topology Appl. 92 (1999), 173-182.
MathSciNet
CrossRef
- S. Macías, Aposyndetic properties of symmetric
products of continua, Topology Proc. 22 (1997), 281-296.
MathSciNet
- S. Macías, Topics on continua, Chapman && Hall/CRC, Boca
Raton, 2005.
MathSciNet
CrossRef
- S. Macías, Deformation retracts and Hilbert cubes
in n-fold hyperspaces, Topology Proc. 40 (2012), 215-226.
MathSciNet
- S. Mardešić and J. Segal, ε-mappings onto
polyhedra, Trans. Amer. Math. Soc. 109 (1963), 146-164.
MathSciNet
CrossRef
- J. R. Munkres, Elements of algebraic topology, Addison-Wesley,
Menlo Park, 1984.
MathSciNet
- S. B. Nadler, Jr., Hyperspaces of sets, Sociedad
Matemática Mexicana, México, 2006.
MathSciNet
- A. Petrus, Contractibility of Whitney continua in C(X),
General Topology Appl. 9 (1978), 275-288.
MathSciNet
CrossRef
- J. T. Rogers, Jr., Applications of a Vietoris-Begle
theorem for multi-valued maps to the cohomology of hyperspaces,
Michigan Math. J. 22 (1975), 315-319.
MathSciNet
CrossRef
- A. H. Wallace, Algebraic topology, homology and
cohomology, W. A. Benjamin, New York, 1970.
MathSciNet
- L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math.
93 (1981), 465-469.
MathSciNet
CrossRef
- G. T. Whyburn, Analytic Topology, AMS, New York, 1942.
MathSciNet
Glasnik Matematicki Home Page