Glasnik Matematicki, Vol. 48, No. 1 (2013), 59-65.
ON ZEROS OF SOME ANALYTIC FUNCTIONS RELATED TO THE RIEMANN ZETA-FUNCTION
Antanas Laurinčikas
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
e-mail: antanas.laurincikas@mif.vu.lt
Abstract. For some classes of functions F, we obtain that the function F(ζ(s)), where ζ(s) denotes the Riemann zeta-function, has infinitely many zeros in the strip 1/2 < Re s < 1. For example, this is true for the functions sin ζ (s) and cos ζ (s).
2010 Mathematics Subject Classification.
11M41.
Key words and phrases. Riemann zeta-function, universality, zero-distribution.
Full text (PDF) (free access)
DOI: 10.3336/gm.48.1.05
References:
- H. M. Bui, B. Conrey and M. P. Young,
More than 41% of the zeros of the zeta function are on the critical line, Acta Arith. 150 (2011), 35-64.
MathSciNet
CrossRef
- X. Gourdon, The 1013 first zeros of the Riemann zeta function and zeros computation at very large height, http://numbers.computation.free.fr, 2004.
- A. Ivić,
The Riemann zeta-function, Wiley, New York, 1985.
MathSciNet
- A. Laurinčikas,
Limit theorems for the Riemann zeta-function, Kluwer, Dordrecht, 1996.
MathSciNet
CrossRef
- A. Laurinčikas,
Universality of the Riemann zeta-function,
J. Number Theory 130 (2010), 2323-2331.
MathSciNet
CrossRef
- A. Laurinčikas and R. Garunkštis,
The Lerch Zeta-Function, Kluwer, Dordrecht, 2002.
MathSciNet
- S. N. Mergelyan,
Uniform approximations to functions of complex variable, Usp. Matem. Nauk 7 (1952), 31-122 (Russian).
MathSciNet
- S. M. Voronin,
Theorem of the "universality" of the Riemann zeta-function,
Izv. Akad. Nauk SSSR. Ser. Mat. 39 (1975),
475-486 (Russian).
- S. M. Voronin,
Selected works: mathematics, (ed. A. A. Karatsuba), Publishing House MGTU Im. N. E. Baumana, Moscow, 2006 (Russian).
- J. L. Walsh,
Interpolation and approximation by rational functions in the complex domain, Vol. XX, Amer. Math. Soc. Coll. Publ. 1960.
MathSciNet
Glasnik Matematicki Home Page