Glasnik Matematicki, Vol. 47, No. 2 (2012), 431-439.

MAP OF QUASICOMPONENTS INDUCED BY A SHAPE MORPHISM

Nikita Shekutkovski, Tatjana Atanasova-Pachemska and Gjorgji Markoski

Institute of Mathematics, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, 1000 Skopje, Republic of Macedonia
e-mail: nikita@pmf.ukim.mk

University "Goce Delchev" - Shtip, Faculty of Informatics, 2000 Shtip, Republic of Macedonia
e-mail: tatjana.pacemska@ugd.edu.mk

Institute of Mathematics, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, 1000 Skopje, Republic of Macedonia
e-mail: gorgim@pmf.ukim.mk


Abstract.   Using the intrinsic definition of shape we prove an analogue of well known Borsuk’s theorem for compact metric spaces. Suppose X and Y are locally compact metric spaces with compact spaces of quasicomponents QX and QY. For a shape morphism f: X → Y there exists a unique continuous map f# :QX → QY, such that for a quasicomponent Q from X and W a clopen set containing f# (Q) the restriction f:Q → W, is a shape morphism, also.

2010 Mathematics Subject Classification.   54C56, 55P55, 54C08.

Key words and phrases.   Intrinsic definition, continuity up to a covering, proximate sequence, proximate net, quasicomponents.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.2.16


References:

  1. Y. Akaike, K. Sakai, Describing the proper n-shape category by using non-continuous functions, Glas. Mat. Ser. III 33 (1998), 299-321.
    MathSciNet    

  2. B. J. Ball, Shapes of saturated subsets of compacta, Colloq. Math. 29 (1974) 241-246.
    MathSciNet    

  3. B. J. Ball, Quasicompactifications and shape theory, Pacific J. Math. 84 (1979), 251-259.
    MathSciNet     CrossRef

  4. B. J. Ball, Partitioning shape-equivalent spaces, Bull. Acad. Pol. Math. 29 (1981), 491-497.
    MathSciNet    

  5. K. Borsuk, Theory of shape, Polish Scientific publishers, Warszawa, 1975.
    MathSciNet    

  6. R. Engelking, General Topology, Monografie Matematiczne, Warszawa, 1977.
    MathSciNet    

  7. R. W. Kieboom, An intrinsic characterization of the shape of paracompacta by menas of non-continuous single-valued maps, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 701-711.
    MathSciNet     CrossRef

  8. Y. Kodama, Decomposition spaces and shape in the sense of Fox, Fund. Math. 97 (1977), 199-208.
    MathSciNet    

  9. M. A. Moron, N-compactness and shape, Proc. Amer. Math. Soc. 113 (1991), 545-550.
    MathSciNet     CrossRef

  10. M. A. Moron, On the Wallman-Frink compactification of 0-dimensional spaces and shape, Arch. Math. (Basel) 58 (1992), 294-300.
    MathSciNet     CrossRef

  11. M. A. Moron, F. R. Ruiz del Portal and J. M. R. Sanjurjo, Shape invariance of N-compactifications, Topology Appl., 56 (1994) 63-71.
    MathSciNet     CrossRef

  12. J. M. R. Sanjurjo, On a theorem of B. J. Ball, Bull. Polish Acad. Sci. Math. 33 (1985), 177-180.
    MathSciNet    

  13. N. Shekutkovski, Intrinsic definition of strong shape for compact metric spaces, Topology Proc. 39 (2012), 27-39.
    MathSciNet    

  14. N. Shekutkovski and G. Markoski, Equivalence of the inverse system approach and the intrinsic approach to proper shape, God. Zb. Inst. Mat. Prir.-Mat. Fak. Univ. Kiril Metodij Skopje 41 (2008) 43-56.
    MathSciNet    

  15. N. Shekutkovski and G. Markoski, Ends and quasicomponents, Cent. Eur. J. Math., 8 (2010), 1009-1015.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page