Glasnik Matematicki, Vol. 47, No. 2 (2012), 431-439.
MAP OF QUASICOMPONENTS INDUCED BY A SHAPE MORPHISM
Nikita Shekutkovski, Tatjana Atanasova-Pachemska and Gjorgji Markoski
Institute of Mathematics, Faculty of Natural Sciences and Mathematics,
Sts. Cyril and Methodius University, 1000 Skopje, Republic of Macedonia
e-mail: nikita@pmf.ukim.mk
University "Goce Delchev" - Shtip, Faculty of Informatics,
2000 Shtip, Republic of Macedonia
e-mail: tatjana.pacemska@ugd.edu.mk
Institute of Mathematics, Faculty of Natural Sciences and Mathematics,
Sts. Cyril and Methodius University, 1000 Skopje, Republic of Macedonia
e-mail: gorgim@pmf.ukim.mk
Abstract. Using the intrinsic definition of shape we prove an analogue of well known Borsuk’s theorem for compact metric spaces.
Suppose X and Y are locally compact metric spaces with compact spaces of quasicomponents QX and QY. For a shape morphism f: X → Y there exists a unique continuous map f# :QX → QY, such that for a quasicomponent Q from X and W a clopen set containing f# (Q) the restriction f:Q → W, is a shape morphism, also.
2010 Mathematics Subject Classification.
54C56, 55P55, 54C08.
Key words and phrases. Intrinsic definition, continuity up to a covering, proximate sequence, proximate net, quasicomponents.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.2.16
References:
-
Y. Akaike, K. Sakai, Describing the proper n-shape category by using non-continuous functions, Glas. Mat. Ser. III 33 (1998), 299-321.
MathSciNet
- B. J. Ball, Shapes of saturated subsets of compacta, Colloq. Math. 29 (1974) 241-246.
MathSciNet
- B. J. Ball, Quasicompactifications and shape theory, Pacific J. Math. 84 (1979), 251-259.
MathSciNet
CrossRef
- B. J. Ball, Partitioning shape-equivalent spaces, Bull. Acad. Pol. Math. 29 (1981), 491-497.
MathSciNet
- K. Borsuk, Theory of shape, Polish Scientific publishers, Warszawa, 1975.
MathSciNet
- R. Engelking, General Topology, Monografie Matematiczne, Warszawa, 1977.
MathSciNet
- R. W. Kieboom, An intrinsic characterization of the shape of paracompacta by menas of non-continuous single-valued maps, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 701-711.
MathSciNet
CrossRef
- Y. Kodama, Decomposition spaces and shape in the sense of Fox, Fund. Math. 97 (1977), 199-208.
MathSciNet
- M. A. Moron, N-compactness and shape, Proc. Amer. Math. Soc. 113 (1991), 545-550.
MathSciNet
CrossRef
- M. A. Moron, On the Wallman-Frink compactification of 0-dimensional spaces and shape, Arch. Math. (Basel) 58 (1992), 294-300.
MathSciNet
CrossRef
- M. A. Moron, F. R. Ruiz del Portal and J. M. R. Sanjurjo, Shape invariance of N-compactifications, Topology Appl., 56 (1994) 63-71.
MathSciNet
CrossRef
- J. M. R. Sanjurjo, On a theorem of B. J. Ball, Bull. Polish Acad. Sci. Math. 33 (1985), 177-180.
MathSciNet
- N. Shekutkovski, Intrinsic definition of strong shape for compact metric spaces, Topology Proc. 39 (2012), 27-39.
MathSciNet
- N. Shekutkovski and G. Markoski, Equivalence of the inverse system approach and the intrinsic approach to proper shape, God. Zb. Inst. Mat. Prir.-Mat. Fak. Univ. Kiril Metodij Skopje 41 (2008) 43-56.
MathSciNet
- N. Shekutkovski and G. Markoski, Ends and quasicomponents,
Cent. Eur. J. Math., 8 (2010), 1009-1015.
MathSciNet
CrossRef
Glasnik Matematicki Home Page