Glasnik Matematicki, Vol. 47, No. 2 (2012), 421-430.
ON THE SIZE OF EQUIFACETTED SEMI-REGULAR POLYTOPES
Tomaž Pisanski, Egon Schulte and Asia Ivić Weiss
Faculty of Mathematics and Physics,
University of Ljubljana,
Ljubljana,
Slovenia
Department of Mathematics,
Northeastern University,
Boston, Massachusetts,
USA, 02115
Department of Mathematics and Statistics,
York University,
Toronto, ON,
Canada M3J 1P3
Abstract. Unlike the situation in the classical theory of convex polytopes, there is a wealth of semi-regular abstract polytopes, including interesting examples exhibiting some unexpected phenomena. We prove that even an equifacetted semi-regular abstract polytope can have an arbitrary large number of flag orbits or face orbits under its combinatorial automorphism group.
2010 Mathematics Subject Classification.
51M20, 52B15.
Key words and phrases. Semi-regular polytope, uniform polytope, Archimedean solid, abstract polytope.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.2.15
References:
- G. Blind and R. Blind, The semiregular polytopes, Comment. Math. Helv. 66 (1991), 150-154.
MathSciNet
CrossRef
- H. S. M. Coxeter, Regular polytopes, 3rd edition, Dover Publications, Inc., New York, 1973.
MathSciNet
- H. S. M. Coxeter, Regular and semi-regular polytopes, I,
Math. Z. 46 (1940), 380-407. (In Kaleidoscopes: Selected
writings of H.S.M. Coxeter (eds. F. A. Sherk, P. McMullen, A. C. Thompson and
A. I. Weiss), Wiley-Interscience, New York, etc., 1995, 251-278.)
MathSciNet
CrossRef
- H. S. M. Coxeter, Regular and semiregular polytopes, II,
Math. Z. 188 (1985), 559-591. (In Kaleidoscopes: Selected
writings of H. S. M. Coxeter (eds. F. A. Sherk, P. McMullen, A. C. Thompson and
A. I. Weiss), Wiley-Interscience, New York, etc., 1995, 279-311.)
MathSciNet
CrossRef
- H. S. M. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller, Uniform polyhedra, Phil. Trans. Roy. Soc. London Ser. A 246 (1954), 401-450.
MathSciNet
CrossRef
- L. Danzer, Regular incidence-complexes and dimensionally unbounded sequences of such. I, in: Convexity and graph theory (Jerusalem 1981),
North-Holland, Amsterdam, 1984, 115-127.
MathSciNet
CrossRef
-
B. Grünbaum, Regularity of graphs, complexes and designs, in: Problèmes combinatoires et théorie des graphes, Colloq. Internat. CNRS 260 (1978), 191-197.
MathSciNet
- T. Gosset, On the regular and semiregular figures in spaces of n dimensions, Messenger of Mathematics 29 (1900), 43-48.
- I. Hubard, Two-orbit polyhedra from groups, European J. Combin. 31 (2010), 943-960.
MathSciNet
CrossRef
- N. W. Johnson, Uniform polytopes, book manuscript, in preparation.
- H. Martini, A hierarchical classification of euclidean polytopes with regularity properties, in: Polytopes: abstract, convex and computational (eds. T. Bisztriczky, P. McMullen, R. Schneider and A. Ivić Weiss),
Kluwer, Dordrecht, 1994, 71-96.
MathSciNet
CrossRef
- P. McMullen and E. Schulte, Abstract regular polytopes,
Cambridge University Press, Cambridge, 2002.
MathSciNet
CrossRef
-
B. Monson and E. Schulte, Semiregular polytopes and amalgamated C-groups, Adv. Math. 229 (2012), 2767–2791.
MathSciNet
CrossRef
- D. Pellicer, A construction of higher rank chiral polytopes, Discrete Math. 310 (2010), 1222-1237.
MathSciNet
CrossRef
- E. Schulte, Extensions of regular complexes, in: Finite
geometries (eds. C.A. Baker and L.M. Batten),
Marcel Dekker, New York, 1985, 289-305.
MathSciNet
- E. Schulte and A. I. Weiss, Chirality and projective linear groups, Discrete Math. 131 (1994), 221-261.
MathSciNet
CrossRef
Glasnik Matematicki Home Page