Glasnik Matematicki, Vol. 47, No. 2 (2012), 415-420.

LINEAR INDEPENDENCE AND SETS OF UNIQUENESS

Hrvoje Šikić and Ivana Slamić

Department of Mathematics, University of Zagreb, Bijenička 30, 10 000 Zagreb, Croatia
e-mail: hsikic@math.hr

Department of Mathematics, University of Rijeka, Omladinska 14, 51000 Rijeka, Croatia
e-mail: islamic@math.uniri.hr


Abstract.   Consider the Bessel system of integer translates k} of a square integrable function ψ. We show that lp-linear independence of k} is equivalent to periodization function pψ(ξ)=∑k Z|(ξ+k)|2 vanishing almost everywhere on a set which is an lp-set of uniqueness, where 1≤ p≤ 2. General result, concerning no restriction on Bessel systems is then proved for the case p=1.

2010 Mathematics Subject Classification.   42C15, 46E30.

Key words and phrases.   Integer translates, lp-linear independence, sets of uniqueness.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.2.14


References:

  1. M. Bownik and D. Speegle, Linear independence of Parseval wavelets, Illinois J. Math. 54 (2010), 771-785.
    MathSciNet     CrossRef

  2. L. Colzani, Existence of sets of uniqueness of lp for general orthonormal systems, Proc. Amer. Math. Soc. 83 (1981), 569-572.
    MathSciNet     CrossRef

  3. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 39 (1990), 961-1005.
    MathSciNet     CrossRef

  4. E. Hernández, H. Šikić, G. Weiss and E. N. Wilson, Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform, Colloq. Math. 118 (2010), 313-332.
    MathSciNet     CrossRef

  5. E. Hernández, H. Šikić, G. Weiss and E. N. Wilson, On the properties of the integer translates of a square integrable function, Contemp. Math. 505 (2010), 233-249.
    MathSciNet     CrossRef

  6. E. Hernández and G. Weiss, A first course on wavelets, CRC Press, Boca Raton, 1996.
    MathSciNet     CrossRef

  7. I. I. Hirschman and Y. Katznelson, Sets of uniqueness and multiplicity for lp,α, Israel J. Math. 3 (1965), 221-231.
    MathSciNet     CrossRef

  8. Y. Katznelson, An introduction to harmonic analysis, 3rd ed., Cambridge University Press, Cambridge, 2004.
    MathSciNet     CrossRef

  9. Y. Katznelson, Sets of uniqueness for some classes of trigonometrical series, Bull. Amer. Math. Soc. 70 (1964), 722-723.
    MathSciNet     CrossRef

  10. S. V. Kislyakov, A sharp correction theorem, Studia Math. 113 (1995), 177-196.
    MathSciNet    

  11. M. Nielsen and H. Šikić, Schauder bases of integer translates, Appl. Comput. Harmon. Anal. 23 (2007), 259-262.
    MathSciNet     CrossRef

  12. S. Saliani, l2-linear independence for the system of integer translates of a square integrable function, to appear in Proc. Amer. Math. Soc.

  13. H. Šikić and D. Speegle, Dyadic PFW's and W0-bases, Functional Analysis IX, Various Publ. Ser. (Aarhus), 48, Univ. Aarhus, Aarhus, 2007, 85-90.
    MathSciNet    

  14. H. Šikić, D. Speegle and G. Weiss, Structure of the set of dyadic PFW's, Contemp. Math. 451 (2008), 263-291.
    MathSciNet     CrossRef

  15. I. Singer, Bases in Banach Spaces I, Springer-Verlag, New-York, 1970.
    MathSciNet    

  16. S. A. Vinogradov, A strengthening of Kolmogorov's theorem on the conjugate function and interpolational properties of uniformly converging power series, Trudy Mat. Inst. Steklov. 155 (1981), 7-40 (in Russian); Engl.transl.: Proc.Stecklov Inst. Math. 155 (1981) 3-37.
    MathSciNet    

  17. A. Zygmund, Trigonometric series, 2nd ed., Cambridge University Press, Cambridge, 1959.
    MathSciNet    

Glasnik Matematicki Home Page