Glasnik Matematicki, Vol. 47, No. 2 (2012), 401-413.
APPROXIMATION OF PERIODIC FUNCTIONS IN WEIGHTED ORLICZ SPACES
Yunus E. Yildirir
Department of Mathematics,
Faculty of Education,
Balikesir University,
10100, Balikesir,
Turkey
e-mail: yildirir@balikesir.edu.tr
Abstract. In the present work we prove some direct theorems of the approximation
theory in the weighted Orlicz spaces with weights satisfying so called
Muckenhoupt's condition and we obtain some estimates for the deviation of a
function in the weighted Orlicz spaces from the linear operators constructed
on the basis of its Fourier series.
2010 Mathematics Subject Classification.
41A10, 42A10.
Key words and phrases. Direct theorem, weighted Orlicz space,
Muckenhoupt weight, modulus of smoothness.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.2.13
References:
- R. Akgun and D. M. Israfilov, Approximation in weighted Orlicz spaces, Math. Slovaca 61 (2011), 601-618.
MathSciNet
CrossRef
- R. Akgun and D. M. Israfilov, Approximation and moduli
of fractional order in Smirnov-Orlicz classes, Glas. Mat. Ser. III 43(63)
(2008), 121-136.
MathSciNet
CrossRef
- R. Akgun, Sharp Jackson and converse theorems of
trigonometric approximation in weighted Lebesgue spaces, Proc. A. Razmadze
Math. Inst. 152 (2010), 1-18.
MathSciNet
- R. A. De Vore and G. G. Lorentz, Constructive
approximation, Springer-Verlag, Berlin, 1993.
MathSciNet
- Z. Ditzian and V. Totik, Moduli of smoothness,
Springer-Verlag, New York, 1987.
MathSciNet
CrossRef
- I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec,
Weight theory for integral transforms on spaces of homogeneous
type, Longman, Harlow, 1998.
MathSciNet
- E. A. Haciyeva, Investigation of the properties of
functions with quasimonotone Fourier coefficients in generalized
Nikolskii-Besov spaces, Author's summary of dissertation, Tbilisi, 1986
(Russian).
- D. M. Israfilov and A. Guven, Approximation by
trigonometric polynomials in weighted Orlicz spaces, Studia Math. 174
(2006), 147-168.
MathSciNet
CrossRef
- D. M. Israfilov and R. Akgun, Approximation in
weighted Smirnov-Orlicz classes, J. Math. Kyoto Univ. 46 (2006), 755-770.
MathSciNet
- D. M. Israfilov, B. Oktay, and R. Akgun, Approximation
in Smirnov- Orlicz classes, Glas. Mat. Ser. III 40(60) (2005), 87-102.
MathSciNet
CrossRef
- V. M. Kokilashvili, On analytic functions of
Smirnov-Orlicz spaces, Studia Math. 31 (1968), 43-59.
MathSciNet
- V. M. Kokilashvili, A direct theorem on mean
approximation of analytic functions by polynomials, Dokl. Akad. Nauk SSSR
10 (1969), 411-414.
- V. Kokilashvili, A note on extrapolation and
modular inequalities, Proc. of A. Razmadze Math. Inst. 150 (2009), 91-97
MathSciNet
- M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ,
Convex functions and Orlicz spaces, Noordhoff Ltd., Groningen, 1961.
MathSciNet
- N. X. Ky, On approximation by trigonometric
polynomials in Lup-spaces, Studia Sci. Math. Hungar. 28
(1993), 183-188.
MathSciNet
- H. N. Mhaskar, Introduction to the theory
weighted polynomial approximation, World Sci., River Edge, 1996.
MathSciNet
- V. G. Ponomarenko, Approximation of periodic
functions in Orlicz space, Translated from Sibirskii Matematicheskii
Zhurnal 7 (1966), 1337-1346.
MathSciNet
- A. R-K. Ramazanov, On approximation by polynomials
and rational functions in Orlicz spaces, Anal. Math. 10 (1984),
117-132.
MathSciNet
CrossRef
- M. M. Rao and Z. D. Ren, Application of Orlicz
spaces, Dekker, 2002.
MathSciNet
CrossRef
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces,
Marcel Dekker, New Tork, 1991.
MathSciNet
- K. Runovski, On Jackson type inequality in
Orlicz classes, Rev. Mat. Complut. 14 (2001), 395-404.
MathSciNet
- A. F. Timan, Theory of approximation of functions
of a real variable, Pergamon press and Macmillan, Oxford, 1963.
MathSciNet
- Y. E. Yildirir and D. M. Israfilov, The properties
of convolution type transforms in weighted Orlicz spaces, Glas. Mat. Ser. III
45(65) (2010), 461-474.
MathSciNet
CrossRef
- G. Wu, On approximation by polynomials in
Orlicz spaces, Approx. Theory Appl. 7 (1991), 97-110.
MathSciNet
Glasnik Matematicki Home Page