Glasnik Matematicki, Vol. 47, No. 2 (2012), 381-400.
ON A FREE PISTON PROBLEM FOR STOKES AND NAVIER-STOKES EQUATIONS
Boris Muha and Zvonimir Tutek
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: borism@math.hr
e-mail: tutek@math.hr
Abstract. Our goal is to model and analyze a stationary fluid flow through the junction
of two pipes in the gravity field. Inside 'vertical' pipe there is a heavy piston
which can freely move along the pipe. We are interested in the equilibrium position of the piston
in dependence on geometry of junction. Fluid is modeled
with the Navier-Stokes equations and the piston is modeled as a rigid body. We
formulate corresponding boundary value problem and prove an existence result.
The problem is nonlinear even in case of the Stokes equations for fluid flow;
we prove non-uniqueness of solutions and illustrate it with some numerical
examples. Furthermore, derivation and analysis of the linearized problem are presented.
2010 Mathematics Subject Classification.
35Q30, 76D05, 74F10.
Key words and phrases. Navier-Stokes equations, free piston problem, fluid-rigid body interaction.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.2.12
References:
-
J. M. Bernard,
Non-standard Stokes and Navier-Stokes problems: existence and
regularity in stationary case,
Math. Methods Appl. Sci. 25 (2002), 627-661.
MathSciNet
CrossRef
-
S. Blazy, S. Nazarov and M. Specovius-Neugebauer,
Artificial boundary conditions of pressure type for viscous flows in
a system of pipes,
J. Math. Fluid Mech. 9 (2007), 1-33.
MathSciNet
CrossRef
-
C. Conca, F. Murat and O. Pironneau,
The Stokes and Navier-Stokes equations with boundary conditions
involving the pressure,
Japan. J. Math. (N.S.) 20 (1994), 279-318.
MathSciNet
-
C. Conca, J. San Martín H. and M. Tucsnak.
Motion of a rigid body in a viscous fluid,
C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 473-478.
MathSciNet
CrossRef
-
B. D'Acunto and S. Rionero,
A note on the existence and uniqueness of solutions to a free piston
problem,
Rend. Accad. Sci. Fis. Mat. Napoli (4) 66 (1999), 75-84.
MathSciNet
-
R. Dautray and J.-L. Lions.
Mathematical analysis and numerical methods for science and
technology. Vol. 1,
Physical origins and classical methods, With the collaboration of
Philippe Bénilan, Michel Cessenat, André Gervat, Alain Kavenoky and
Hélène Lanchon, Translated from the French by Ian N. Sneddon, With a
preface by Jean Teillac, Springer-Verlag, Berlin, 1990.
MathSciNet
-
B. Desjardins and M. J. Esteban,
On weak solutions for fluid-rigid structure interaction: compressible
and incompressible models,
Comm. Partial Differential Equations 25 (2000), 1399-1413.
MathSciNet
CrossRef
-
G. P. Galdi,
An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I. Linearized steady problems,
Springer-Verlag, New York, 1994.
MathSciNet
-
G. P. Galdi,
An introduction to the mathematical theory of the Navier-Stokes equations. Vol. II. Nonlinear steady problems,
Springer-Verlag, New York, 1994.
MathSciNet
-
G. P. Galdi,
Mathematical problems in classical and non-Newtonian fluid
mechanics, in: Hemodynamical flows,
Birkhäuser, Basel, 2008, 121-273.
MathSciNet
CrossRef
-
V. Girault and P.-A. Raviart,
Finite element methods for Navier-Stokes equations. Theory and algorithms,
Springer-Verlag, Berlin, 1986.
MathSciNet
CrossRef
-
M. Hillairet and D. Serre,
Chute stationnaire d'un solide dans un fluide visqueux incompressible
le long d'un plan incliné,
Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 779-803.
MathSciNet
CrossRef
-
H. Kielhöfer,
Bifurcation theory. An introduction with applications to PDEs,
Springer-Verlag, New York, 2004.
MathSciNet
-
E. Marušić-Paloka,
Rigorous justification of the Kirchhoff law for junction of thin
pipes filled with viscous fluid,
Asymptot. Anal. 33 (2003), 51-66.
MathSciNet
-
V. Maz'ya and J. Rossmann,
Lp estimates of solutions to mixed boundary value problems for
the Stokes system in polyhedral domains,
Math. Nachr. 280 (2007), 751-793.
MathSciNet
CrossRef
-
V. Maz'ya and J. Rossmann,
Mixed boundary value problems for the stationary Navier-Stokes
system in polyhedral domains,
Arch. Ration. Mech. Anal. 194 (2009), 669-712.
MathSciNet
CrossRef
-
J. Nečas,
Les méthodes directes en théorie des équations elliptiques,
Masson et Cie, Éditeurs, Paris, 1967.
MathSciNet
-
V. G. Osmolovskiĭ,
Linear and nonlinear perturbations of the operator div. Translated from the 1995 Russian original by Tamara Rozhkovskaya,
American Mathematical Society, Providence, 1997.
MathSciNet
-
S. Takeno,
Free piston problem for isentropic gas dynamics,
Japan J. Indust. Appl. Math. 12 (1995), 163-194.
MathSciNet
CrossRef
-
R. Temam,
Navier-Stokes equations. Theory and numerical analysis,
North-Holland Publishing Co., Amsterdam, 1977.
MathSciNet
Glasnik Matematicki Home Page