Glasnik Matematicki, Vol. 47, No. 2 (2012), 373-379.
GLOBAL SPACE-TIME Lp-ESTIMATES FOR THE AIRY OPERATOR ON L2(R2) AND SOME APPLICATIONS
Aicha Chaban and Mohammed Hichem Mortad
Département de Mathématiques,
Université d'Oran
(Es-senia),
B.P. 1524, El Menouar, Oran 31000,
Algeria
e-mail: aichachaban@yahoo.fr
Département de Mathématiques,
Université d'Oran
(Es-senia),
B.P. 1524, El Menouar, Oran 31000,
Algeria
e-mail: mhmortad@gmail.com, mortad@univ-oran.dz
Abstract. Let L be the Airy operator. The aim of
this paper is to prove some a priori estimates for L defined as an
unbounded operator on L2(R2). Some applications and
counterexamples are also given.
2010 Mathematics Subject Classification.
35B45, 47A55.
Key words and phrases. Airy equation and operator, a priori estimates, relative
boundedness, perturbation, self-adjoint operators.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.2.11
References:
-
L. C. Evans, Partial differential equations, American
Mathematical Society, Providence, 1998.
MathSciNet
-
C. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of
dispersive equations, Indiana Univ. Math. J. 40
(1991), 33-69.
MathSciNet
CrossRef
-
E. H. Lieb and M. Loss, Analysis, Second Edition, American Mathematical
Society, Providence, 2001.
MathSciNet
-
M. H. Mortad, Self-adjointness of the perturbed wave operator on
L2(Rn), n≥ 2, Proc. Amer. Math. Soc. 133
(2005), 455-464.
MathSciNet
CrossRef
-
M. H. Mortad, On Lp-estimates for the time-dependent
Schrödinger operator on L2, JIPAM J. Ineq.
Pure Appl. Math. 8 (2007), Art. 80, 8pp.
MathSciNet
-
M. H. Mortad, Global space-time lp-estimates for the wave
operator on L2, Rend. Semin. Mat. Univ. Politec. Torino 69 (2011), 91-96.
MathSciNet
-
M. Reed and B. Simon, Methods of modern mathematical physics,
II. Fourier analysis, self-adjointness, Academic Press, New York-London,
1975.
MathSciNet
Glasnik Matematicki Home Page