Glasnik Matematicki, Vol. 47, No. 2 (2012), 373-379.

GLOBAL SPACE-TIME Lp-ESTIMATES FOR THE AIRY OPERATOR ON L2(R2) AND SOME APPLICATIONS

Aicha Chaban and Mohammed Hichem Mortad

Département de Mathématiques, Université d'Oran (Es-senia), B.P. 1524, El Menouar, Oran 31000, Algeria
e-mail: aichachaban@yahoo.fr

Département de Mathématiques, Université d'Oran (Es-senia), B.P. 1524, El Menouar, Oran 31000, Algeria
e-mail: mhmortad@gmail.com, mortad@univ-oran.dz


Abstract.   Let L be the Airy operator. The aim of this paper is to prove some a priori estimates for L defined as an unbounded operator on L2(R2). Some applications and counterexamples are also given.

2010 Mathematics Subject Classification.   35B45, 47A55.

Key words and phrases.   Airy equation and operator, a priori estimates, relative boundedness, perturbation, self-adjoint operators.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.2.11


References:

  1. L. C. Evans, Partial differential equations, American Mathematical Society, Providence, 1998.
    MathSciNet    

  2. C. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69.
    MathSciNet     CrossRef

  3. E. H. Lieb and M. Loss, Analysis, Second Edition, American Mathematical Society, Providence, 2001.
    MathSciNet    

  4. M. H. Mortad, Self-adjointness of the perturbed wave operator on L2(Rn), n≥ 2, Proc. Amer. Math. Soc. 133 (2005), 455-464.
    MathSciNet     CrossRef

  5. M. H. Mortad, On Lp-estimates for the time-dependent Schrödinger operator on L2, JIPAM J. Ineq. Pure Appl. Math. 8 (2007), Art. 80, 8pp.
    MathSciNet    

  6. M. H. Mortad, Global space-time lp-estimates for the wave operator on L2, Rend. Semin. Mat. Univ. Politec. Torino 69 (2011), 91-96.
    MathSciNet    

  7. M. Reed and B. Simon, Methods of modern mathematical physics, II. Fourier analysis, self-adjointness, Academic Press, New York-London, 1975.
    MathSciNet    

Glasnik Matematicki Home Page